998 resultados para Functional Assay
Resumo:
An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.
Resumo:
Genetic and functional data indicate that variation in the expression of the neurotrophin-3 receptor gene (NTRK3) may have an impact on neuronal plasticity, suggesting a role for NTRK3 in the pathophysiology of anxiety disorders. MicroRNA (miRNA) posttranscriptional gene regulators act by base-pairing to specific sequence sites, usually at the 3'UTR of the target mRNA. Variants at these sites might result in gene expression changes contributing to disease susceptibility. We investigated genetic variation in two different isoforms of NTRK3 as candidate susceptibility factors for anxiety by resequencing their 3'UTRs in patients with panic disorder (PD), obsessive-compulsive disorder (OCD), and in controls. We have found the C allele of rs28521337, located in a functional target site for miR-485-3p in the truncated isoform of NTRK3, to be significantly associated with the hoarding phenotype of OCD. We have also identified two new rare variants in the 3'UTR of NTRK3, ss102661458 and ss102661460, each present only in one chromosome of a patient with PD. The ss102661458 variant is located in a functional target site for miR-765, and the ss102661460 in functional target sites for two miRNAs, miR-509 and miR-128, the latter being a brain-enriched miRNA involved in neuronal differentiation and synaptic processing. Interestingly, these two variants significantly alter the miRNA-mediated regulation of NTRK3, resulting in recovery of gene expression. These data implicate miRNAs as key posttranscriptional regulators of NTRK3 and provide a framework for allele-specific miRNA regulation of NTRK3 in anxiety disorders.
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.
Resumo:
Background: One of the main goals of cancer genetics is to identify the causative elements at the molecular level leading to cancer.Results: We have conducted an analysis of a set of genes known to be involved in cancer in order to unveil their unique features that can assist towards the identification of new candidate cancer genes. Conclusion: We have detected key patterns in this group of genes in terms of the molecular function or the biological process in which they are involved as well as sequence properties. Based on these features we have developed an accurate Bayesian classification model with which human genes have been scored for their likelihood of involvement in cancer.
Resumo:
Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.
Resumo:
OBJECTIVE: A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS: Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS: We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION: These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Resumo:
BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.
Resumo:
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. VIDEO ABSTRACT:
Resumo:
Changes in expression and function of voltage-gated sodium channels (VGSC) in dorsal root ganglion (DRG) neurons may play a major role in the genesis of peripheral hyperexcitability that occurs in neuropathic pain. We present here the first description of changes induced by spared nerve injury (SNI) to Na(v)1 mRNA levels and tetrodotoxin-sensitive and -resistant (TTX-S/TTX-R) Na(+) currents in injured and adjacent non-injured small DRG neurons. VGSC transcripts were down-regulated in injured neurons except for Na(v)1.3, which increased, while they were either unchanged or increased in non-injured neurons. TTX-R current densities were reduced in injured neurons and the voltage dependence of steady-state inactivation for TTX-R was positively shifted in injured and non-injured neurons. TTX-S current densities were not affected by SNI, while the rate of recovery from inactivation was accelerated in injured neurons. Our results describe altered neuronal electrogenesis following SNI that is likely induced by a complex regulation of VGSCs.
Comparison of Seegene Anyplex II HPV28 with the PGMY-CHUV Assay for Human Papillomavirus Genotyping.
Resumo:
The Anyplex II HPV28 (H28; Seegene) is a new semiquantitative real-time multiplex PCR assay for screening and genotyping 28 human papillomaviruses (HPV) in only 2 reaction wells. H28 was compared to the PGMY-CHUV assay (PG) with 309 archival DNA samples from cervical smears collected over 8 years in our laboratory. H28 and PG were fully concordant at the genotypic level on 228 (73.8%) out of 309 samples: 27 HPV negative and 201 HPV positive. The 201 fully concordant positive samples corresponded to single infections (n = 145) and to multiple infections (2 genotypes, n = 38; 3 to 5 genotypes, n = 18). The remaining 81 samples (26.2%) were either partially concordant (n = 64, 20.7%) or fully discordant (n = 17, 5.5%). While genotype-specific agreement was nearly perfect (κ = 0.877), HPV51 was significantly less well detected by H28 and the converse was observed for HPV40, -42, -54, and -68. Sequencing of PG amplicons confirmed HPV51 discordants and suggested the involvement of a possibly local HPV51 subtype. Mismatches in the PGMY09 primers to HPV68a explained most of the HPV68 discordants, confirming the specificity of H28 toward HPV68. With PG as a reference, the sensitivity and specificity of H28 were 93.4% and 99.0%, respectively. Considering H28 as a reference, the sensitivity and specificity of PG were 83.8% and 99.6%, respectively. H28 is a very sensitive and specific HPV genotyping assay suitable for research and clinical use as an adjunct to a clinically validated test. H28 semiquantitative readout ought to be evaluated for primary cervical cancer screening.
Resumo:
Purpose: To evaluate the short- and mid-term evolutions of the apparent diffusion coefficient of lesions treated with RF, in order to determine if the ADC can be used as a marker of tumour response. Methods and Materials: Twenty patients were treated for a liver malignancy with RF and were examined on a 1.5 T/3.0 T machine with T2, gadolinium-enhanced T1 and diffusion sequences: before treatment (< 1 month), just after treatment (< 1 month) and midterm (3-6 months). The ADC was measured in the whole lesion and in the area with the most restricted diffusion (MRDA). The ROI size was also measured on the diffusion map. The Pearson/ANOVA tests were used. Results: All patients were successfully treated with complete disappearance of CE. The lesional size on T2 showed a negative evolution in time (p < 0.002). The ADC in the whole lesion showed a bell-shaped evolution (increasing just after RF, then decreasing, p = 0.02). The ROI size on the diffusion map followed a similar course (p = 0.01). For the MRDA, such evolutions were also found, but they were not significant. There was a negative correlation between CE and the ADC (p < 0.02) and between the lesional size on T2 and ADC (p = 0.03) in the whole lesion. There were also positive correlations between the ROI size and ADC (p = 0.0008) and between CE and the size on T2 (p = 0.0002). The ADC in MRDA showed some non-significant correlations with other variables. Conclusion: The lesions successfully treated with RF have a clear and predictable evolution in terms of T2 size, CE and ADC.
Resumo:
In a biophysical approach to the study of swimming performance (blending biomechanics and bioenergetics), inter-limb coordination is typically considered and analysed to improve propulsion and propelling efficiency. In this approach, 'opposition' or 'continuous' patterns of inter-limb coordination, where continuity between propulsive actions occurs, are promoted in the acquisition of expertise. Indeed a 'continuous' pattern theoretically minimizes intra-cyclic speed variations of the centre of mass. Consequently, it may also minimize the energy cost of locomotion. However, in skilled swimming performance there is a need to strike a delicate balance between inter-limb coordination pattern stability and variability, suggesting the absence of an 'ideal' pattern of coordination toward which all swimmers must converge or seek to imitate. Instead, an ecological dynamics framework advocates that there is an intertwined relationship between the specific intentions, perceptions and actions of individual swimmers, which constrains this relationship between coordination pattern stability and variability. This perspective explains how behaviours emerge from a set of interacting constraints, which each swimmer has to satisfy in order to achieve specific task performance goals and produce particular task outcomes. This overview updates understanding on inter-limb coordination in swimming to analyse the relationship between coordination variability and stability in relation to interacting constraints (related to task, environment and organism) that swimmers may encounter during training and performance.
Resumo:
Recent evidence suggests that the heart possesses a greater regeneration capacity than previously thought. In the present study, we isolated undifferentiated precursors from the cardiac nonmyocyte cell population of neonatal hearts, expanded them in culture, and induced them to differentiate into functional cardiomyocytes. These cardiac precursors appear to express stem cell antigen-1 and demonstrate characteristics of multipotent precursors of mesodermal origin. Following infusion into normal recipients, these cells home to the heart and participate in physiological and pathophysiological cardiac remodeling. Cardiogenic differentiation in vitro and in vivo depends on FGF-2. Interestingly, this factor does not control the number of precursors but regulates the differentiation process. These findings suggest that, besides its angiogenic actions, FGF-2 could be used in vivo to facilitate the mobilization and differentiation of resident cardiac precursors in the treatment of cardiac diseases.