879 resultados para Focused retrieval
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
In April 2009, Google Images added a filter for narrowing search results by colour. Several other systems for searching image databases by colour were also released around this time. These colour-based image retrieval systems enable users to search image databases either by selecting colours from a graphical palette (i.e., query-by-colour), by drawing a representation of the colour layout sought (i.e., query-by-sketch), or both. It was comments left by readers of online articles describing these colour-based image retrieval systems that provided us with the inspiration for this research. We were surprised to learn that the underlying query-based technology used in colour-based image retrieval systems today remains remarkably similar to that of systems developed nearly two decades ago. Discovering this ageing retrieval approach, as well as uncovering a large user demographic requiring image search by colour, made us eager to research more effective approaches for colour-based image retrieval. In this thesis, we detail two user studies designed to compare the effectiveness of systems adopting similarity-based visualisations, query-based approaches, or a combination of both, for colour-based image retrieval. In contrast to query-based approaches, similarity-based visualisations display and arrange database images so that images with similar content are located closer together on screen than images with dissimilar content. This removes the need for queries, as users can instead visually explore the database using interactive navigation tools to retrieve images from the database. As we found existing evaluation approaches to be unreliable, we describe how we assessed and compared systems adopting similarity-based visualisations, query-based approaches, or both, meaningfully and systematically using our Mosaic Test - a user-based evaluation approach in which evaluation study participants complete an image mosaic of a predetermined target image using the colour-based image retrieval system under evaluation.
Resumo:
A variety of content-based image retrieval systems exist which enable users to perform image retrieval based on colour content - i.e., colour-based image retrieval. For the production of media for use in television and film, colour-based image retrieval is useful for retrieving specifically coloured animations, graphics or videos from large databases (by comparing user queries to the colour content of extracted key frames). It is also useful to graphic artists creating realistic computer-generated imagery (CGI). Unfortunately, current methods for evaluating colour-based image retrieval systems have 2 major drawbacks. Firstly, the relevance of images retrieved during the task cannot be measured reliably. Secondly, existing methods do not account for the creative design activity known as reflection-in-action. Consequently, the development and application of novel and potentially more effective colour-based image retrieval approaches, better supporting the large number of users creating media for use in television and film productions, is not possible as their efficacy cannot be reliably measured and compared to existing technologies. As a solution to the problem, this paper introduces the Mosaic Test. The Mosaic Test is a user-based evaluation approach in which participants complete an image mosaic of a predetermined target image, using the colour-based image retrieval system that is being evaluated. In this paper, we introduce the Mosaic Test and report on a user evaluation. The findings of the study reveal that the Mosaic Test overcomes the 2 major drawbacks associated with existing evaluation methods and does not require expert participants. © 2012 Springer Science+Business Media, LLC.
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
In order to bridge the “Semantic gap”, a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. In this paper, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.
Resumo:
This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.
Resumo:
Dissimilarity measurement plays a crucial role in content-based image retrieval, where data objects and queries are represented as vectors in high-dimensional content feature spaces. Given the large number of dissimilarity measures that exist in many fields, a crucial research question arises: Is there a dependency, if yes, what is the dependency, of a dissimilarity measure’s retrieval performance, on different feature spaces? In this paper, we summarize fourteen core dissimilarity measures and classify them into three categories. A systematic performance comparison is carried out to test the effectiveness of these dissimilarity measures with six different feature spaces and some of their combinations on the Corel image collection. From our experimental results, we have drawn a number of observations and insights on dissimilarity measurement in content-based image retrieval, which will lay a foundation for developing more effective image search technologies.
Resumo:
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
After exogenously cueing attention to a peripheral location, the return of attention and response to the location can be inhibited. We demonstrate that these inhibitory mechanisms of attention can be associated with objects and can be automatically and implicitly retrieved over relatively long periods. Furthermore, we also show that when face stimuli are associated with inhibition, the effect is more robust for faces presented in the left visual field. This effect can be even more spatially specific, where most robust inhibition is obtained for faces presented in the upper as compared to the lower visual field. Finally, it is revealed that the inhibition is associated with an object’s identity, as inhibition moves with an object to a new location; and that the retrieved inhibition is only transiently present after retrieval.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Similar to Genetic algorithm, Evolution strategy is a process of continuous reproduction, trial and selection. Each new generation is an improvement on the one that went before. This paper presents two different proposals based on the vector space model (VSM) as a traditional model in information Retrieval (TIR). The first uses evolution strategy (ES). The second uses the document centroid (DC) in query expansion technique. Then the results are compared; it was noticed that ES technique is more efficient than the other methods.
Resumo:
Query expansion (QE) is a potentially useful technique to help searchers formulate improved query statements, and ultimately retrieve better search results. The objective of our query expansion technique is to find a suitable additional term. Two query expansion methods are applied in sequence to reformulate the query. Experiments on test collections show that the retrieval effectiveness is considerably higher when the query expansion technique is applied.