941 resultados para Flower-like structures
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.
Resumo:
Application of `advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising non-compact sections is established by comparison with a comprehensive range of analytical benchmark frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the conventional individual member design methods based on elastic analysis and specification equations.
Resumo:
Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A series of large-scale tests were performed in order to provide experimental results for verification of the new analytical models. Each of the test frames comprised non-compact sections, and exhibited significant local buckling behaviour prior to failure. This paper presents details of the test program including the test specimens, set-up and instrumentation, procedure, and results.
Resumo:
Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper, we apply the algebraic attack approach of Berbain et al. to Trivium-like ciphers and perform new analyses on them. We demonstrate a new algebraic attack on Bivium-A. This attack requires less time and memory than previous techniques to recover Bivium-A's initial state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the systems of equations which are constructed are smaller and less complex compared to previous algebraic analyses. We also answer an open question posed by Berbain et al. on the feasibility of applying their technique on Trivium-like ciphers. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail. Analysis of Bivium-B and Trivium-N are omitted from this manuscript. The full paper is available on the IACR ePrint Archive.
Resumo:
Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.
Resumo:
Within the QUT Business School (QUTBS)– researchers across economics, finance and accounting depend on data driven research. They analyze historic and global financial data across a range of instruments to understand the relationships and effects between them as they respond to news and events in their region. Scholars and Higher Degree Research Students in turn seek out universities which offer these particular datasets to further their research. This involves downloading and manipulating large datasets, often with a focus on depth of detail, frequency and long tail historical data. This is stock exchange data and has potential commercial value therefore the license for access tends to be very expensive. This poster reports the following findings: •The library has a part to play in freeing up researchers from the burden of negotiating subscriptions, fundraising and managing the legal requirements around license and access. •The role of the library is to communicate the nature and potential of these complex resources across the university to disciplines as diverse as Mathematics, Health, Information Systems and Creative Industries. •Has demonstrated clear concrete support for research by QUT Library and built relationships into faculty. It has made data available to all researchers and attracted new HDRs. The aim is to reach the output threshold of research outputs to submit into FOR Code 1502 (Banking, Finance and Investment) for ERA 2015. •It is difficult to identify what subset of dataset will be obtained given somewhat vague price tiers. •The integrity of data is variable as it is limited by the way it is collected, this occasionally raises issues for researchers(Cook, Campbell, & Kelly, 2012) •Improved library understanding of the content of our products and the nature of financial based research is a necessary part of the service.
Resumo:
Research has suggested that lesbian, gay, bisexual and transgender (LGBT) young people are “at-risk” of victimization and/or legally “risky.” Relatively few studies have examined the social construction of risk in “risk factor” research and whether risk as a concept influences the everyday lives of LGBT young people. This article reports how 35 LGBT young people and seven service provider staff in Brisbane, Queensland, Australia perceived LGBT youth–police interactions as reflecting discourses about LGBT riskiness and danger. The participants specifically note how they thought looking at-risk and/or looking risky informed their policing experiences. The article concludes with recommendations for improving future policing practice.
Resumo:
Beginning in the second half of the 20th century, ICTs transformed many societies from industrial societies in which manufacturing was the central focus, into knowledge societies in which dealing effectively with data and information has become a central element of work (Anderson, 2008). To meet the needs of the knowledge society, universities must reinvent their structures and processes, their curricula and pedagogic practices. In addition to this, of course higher education is itself subject to the sweeping influence of ICTs. But what might effective higher education look like in the 21st century? In designing higher education systems and learning experiences which are responsive to the learning needs of the future and exploit the possibilities offered by ICTs, we can learn much from the existing professional development strategies of people who are already successful in 21st century fields, such as digital media. In this study, I ask: (1) what are the learning challenges faced by digital media professionals in the 21st century? (2) what are the various roles of formal and informal education in their professional learning strategies at present? (3) how do they prefer to acquire needed capabilities? In-depth interviews were undertaken with successful Australian digital media professionals working in micro businesses and SMEs to answer these questions. The strongest thematic grouping that emerged from the interviews related to the need for continual learning and relearning because of the sheer rate of change in the digital media industries. Four dialectical relationships became apparent from the interviewees’ commentaries around the learning imperatives arising out of the immense and continual changes occurring in the digital content industries: (1) currency vs best practice (2) diversification vs specialisation of products and services (3) creative outputs vs commercial outcomes (4) more learning opportunities vs less opportunity to learn. These findings point to the importance of ‘learning how to learn’ as a 21st century capability. The interviewees were ambivalent about university courses as preparation for professional life in their fields. Higher education was described by several interviewees as having relatively little value-add beyond what one described as “really expensive credentialling services.” For all interviewees in this study, informal learning strategies were the preferred methods of acquiring the majority of knowledge and skills, both for ongoing and initial professional development. Informal learning has no ‘curriculum’ per se, and tends to be opportunistic, unstructured, pedagogically agile and far more self-directed than formal learning (Eraut, 2004). In an industry impacted by constant change, informal learning is clearly both essential and ubiquitous. Inspired by the professional development strategies of the digital media professionals in this study, I propose a 21st century model of the university as a broad, open learning ecology, which also includes industry, professionals, users, and university researchers. If created and managed appropriately, the university learning network becomes the conduit and knowledge integrator for the latest research and industry trends, which students and professionals alike can access as needed.
Resumo:
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
Resumo:
Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.
Resumo:
A component of broader scholarship addressing the social context in which individuals work, has focused on the role of ‘employee voice’ in determining flexible-work outcomes (Donnelly et al., 2012). Employee voice incorporates a spectrum of practices designed to give employees a say in organisational decisions (Dundon et al., 2004). This paper extends work on voice and workplace flexibility in two ways. First, it focuses not simply on ‘voice’ but on its antithesis, employee silence, which is defined (following Van Dyne et al., 2003) as the intentional withholding of ideas and opinions. We utilise an alternative reading of silence to the majority of literature which interprets it as a product of employee motivation, by focusing on the role of management and by adopting a framework which considers silence as a control dialectic (Donaghey et al., 2011). Second, the study examines silence with respect to preferences for customising the terms/conditions of employment beyond narrowly defined notions of ‘flexible work’ (e.g., reduced hours; home-working). The study utilises 30 telephone interviews with employees who had been previously identified as ‘discontent non-requesters’ (Skinner and Pocock, 2011: 75), that is they had expressed a desire to request flexible working provisions, but had not done so. Interviewees were asked to articulate the reasons for, and consequences of, their silence. The findings reveal nuanced workplace practices and structures that close down possibilities for employee voice and perpetuate silence on matters relating to customising work. They also illustrate a disjuncture between espoused organizational goals and everyday practices and norms encountered in workplaces.
Resumo:
Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.
Resumo:
Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.