955 resultados para Feature learning
Resumo:
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.
Resumo:
Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2011 and the six months ended December 31, 2010
Resumo:
At the University of Lausanne third-year medical students are given the task of spending a month investigating a question of community medicine. In 2009, four students evaluated the legitimacy of health insurers intervening in the management of depression. They found that health insurers put pressure on public authorities during the development of legislation governing the health system and reimbursement for treatment. This fact emerged during the scientific investigation led jointly by the team in the course of the "module of immersion in community medicine." This paper presents each step of their study. The example chosen illustrates the learning objectives covered by the module.
Resumo:
In this paper we propose an innovative methodology for automated profiling of illicit tablets bytheir surface granularity; a feature previously unexamined for this purpose. We make use of the tinyinconsistencies at the tablet surface, referred to as speckles, to generate a quantitative granularity profileof tablets. Euclidian distance is used as a measurement of (dis)similarity between granularity profiles.The frequency of observed distances is then modelled by kernel density estimation in order to generalizethe observations and to calculate likelihood ratios (LRs). The resulting LRs are used to evaluate thepotential of granularity profiles to differentiate between same-batch and different-batches tablets.Furthermore, we use the LRs as a similarity metric to refine database queries. We are able to derivereliable LRs within a scope that represent the true evidential value of the granularity feature. Thesemetrics are used to refine candidate hit-lists form a database containing physical features of illicittablets. We observe improved or identical ranking of candidate tablets in 87.5% of cases when granularityis considered.
Resumo:
At the Lausanne University, 5th year medical students were trained in Motivational interviewing (MI). Eight hours of training improved their competence in the use of this approach. This experience supports the implementation of MI training in medical schools. Motivational interviewing allows the health professional to actively involve the patient in this behavior change process (drinking, smoking, diet, exercise, medication adherence, etc.), by encouraging reflection and reinforcing personal motivation and resources.
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Resumo:
Audit report on the Muscatine Agricultural Learning Center for the year ended December 31, 2012
Resumo:
Learning is the ability of an organism to adapt to the changes of its environment in response to its past experience. It is a widespread ability in the animal kingdom, but its evolutionary aspects are poorly known. Learning ability is supposedly advantageous under some conditions, when environmental conditions are not too stable - because in this case there is no need to learn to predict any event in the environment - and not changing too fast - otherwise environmental cues cannot be used because they are not reliable. Nevertheless, learning ability is also known to be costly in terms of energy needed for neuronal synthesis, memory formation, initial mistakes. During my PhD, I focused on the study of genetic variability of learning ability in natural populations. Genetic variability is the basis on which natural selection and genetic drift can act. How does learning ability vary in nature? What are the roles of additive genetic variation or maternal effects in this variation? Is it involved in evolutionary trade-offs with other fitness-related traits?¦I investigated a natural population of fruit fly, Drosophila melanogaster, as a model organism. Its learning ability is easy to measure with associative memory tests. I used two research tools: multiple inbred and isofemale lines derived from a natural population as a representative sample. My work was divided into three parts.¦First, I investigated the effects of inbreeding on aversive learning (avoidance of an odor previously associated with mechanical shock). While the inbred lines consistently showed reduced egg-to-adult viability by 28 %, the effects of inbreeding on learning performance was 18 % and varied among assays, with a trend to be most pronounced for intermediate conditioning intensity. Variation among inbred lines indicates that ample genetic variance for learning was segregating in the base population, and suggests that the inbreeding depression observed in learning performance was mostly due to dominance rather than overdominance. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts previous studies which observed a trade-off between learning ability and lifespan or larval competitive ability. It suggests that much of the genetic variation for learning is due to pleiotropic effects of genes affecting other functions related to survival. Together with the overall mild effects of inbreeding on learning performance, this suggests that genetic variation specifically affecting learning is either very low, or is due to alleles with mostly additive (semi-dominant) effects. It also suggests that alleles reducing learning performance are on average partially recessive, because their effect does not appear in the outbred base population. Moreover, overdominance seems unlikely as major cause of the inbreeding depression, because even if the overall mean of the inbred line is smaller than the outbred base population, some of the inbred lines show the same learning score as the outbred base population. If overdominance played an important part in inbreeding depression, then all the homozygous lines should show lower learning ability than¦outbred base population.¦In the second part of my project, I sampled the same natural population again and derived isofemale lines (F=0.25) which are less adapted to laboratory conditions and therefore are more representative of the variance of the natural population. They also showed some genetic variability for learning, and for three other fitness-related traits possibly related with learning: resistance to bacterial infection, egg-to-adult viability and developmental time. Nevertheless, the genetic variance of learning ability did not appear to be smaller than the variance of the other traits. The positive correlation previously observed between learning ability and egg- to-adult viability did not appear in isofemale lines (nor a negative correlation). It suggests that there was still genetic variability within isofemale lines and that they did not fix the highly deleterious pleiotropic alleles possibly responsible for the previous correlation.¦In order to investigate the relative amount of nuclear (additive and non-additive effects) and extra-nuclear (maternal and paternal effect) components of variance in learning ability and other fitness-related traits among the inbred lines tested in part one, I performed a diallel cross between them. The nuclear additive genetic variance was higher than other components for learning ability and survival to learning ability, but in contrast, maternal effects were more variable than other effects for developmental traits. This suggests that maternal effects, which reflects effects from mitochondrial DNA, epigenetic effects, or the amount of nutrients that are invested by the mother in the egg, are more important in the early stage of life, and less at the adult stage. There was no additive genetic correlation between learning ability and other traits, indicating that the correlation between learning ability and egg-to-adult viability observed in the first pat of my project was mostly due to recessive genes.¦Finally, my results showed that learning ability is genetically variable. The diallel experiment showed additive genetic variance was the most important component of the total variance. Moreover, every inbred or isofemale line showed some learning ability. This suggested that alleles impairing learning ability are eliminated by selection, and therefore that learning ability is under strong selection in natural populations of Drosophila. My results cannot alone explain the maintenance of the observed genetic variation. Even if I cannot eliminate the hypothesis of pleiotropy between learning ability and the other fitness-related traits I measured, there is no evidence for any trade-off between these traits and learning ability. This contradicts what has been observed between learning ability and other traits like lifespan and larval competitivity.¦L'apprentissage représente la capacité d'un organisme à s'adapter aux changement de son environnement au cours de sa vie, en réponse à son expérience passée. C'est une capacité très répandue dans le règne animal, y compris pour les animaux les plus petits et les plus simples, mais les aspects évolutifs de l'apprentissage sont encore mal connus. L'apprentissage est supposé avantageux dans certaines conditions, quand l'environnement n'est ni trop stable - dans ce cas, il n'y a rien à apprendre - ni trop variable - dans ce cas, les indices sur lesquels se reposer changent trop vite pour apprendre. D'un autre côté, l'apprentissage a aussi des coûts, en terme de synthèse neuronale, pour la formation de la mémoire, ou de coûts d'erreur initiale d'apprentissage. Pendant ma thèse, j'ai étudié la variabilité génétique naturelle des capacités d'apprentissage. Comment varient les capacités d'apprentissage dans la nature ? Quelle est la part de variation additive, l'impact des effets maternel ? Est-ce que l'apprentissage est impliqué dans des interactions, de type compromis évolutifs, avec d'autres traits liés à la fitness ?¦Afin de répondre à ces questions, je me suis intéressée à la mouche du vinaigre, ou drosophile, un organisme modèle. Ses capacités d'apprentissage sont facile à étudier avec un test de mémoire reposant sur l'association entre un choc mécanique et une odeur. Pour étudier ses capacités naturelles, j'ai dérivé de types de lignées d'une population naturelle: des lignées consanguines et des lignées isofemelles.¦Dans une première partie, je me suis intéressée aux effets de la consanguinité sur les capacités d'apprentissage, qui sont peu connues. Alors que les lignées consanguines ont montré une réduction de 28% de leur viabilité (proportion d'adultes émergeants d'un nombre d'oeufs donnés), leurs capacités d'apprentissage n'ont été réduites que de 18%, la plus forte diminution étant obtenue pour un conditionnement modéré. En outre, j'ai également observé que les capacités d'apprentissage était positivement corrélée à la viabilité entre les lignées. Cette corrélation est surprenante car elle est en contradiction avec les résultats obtenus par d'autres études, qui montrent l'existence de compromis évolutifs entre les capacités d'apprentissage et d'autres traits comme le vieillissement ou la compétitivité larvaire. Elle suggère que la variation génétique des capacités d'apprentissage est due aux effets pleiotropes de gènes récessifs affectant d'autres fonctions liées à la survie. Ces résultats indiquent que la variation pour les capacités d'apprentissage est réduite comparée à celle d'autres traits ou est due à des allèles principalement récessifs. L'hypothèse de superdominance semble peu vraisemblable, car certaines des lignées consanguines ont obtenu des scores d'apprentissage égaux à ceux de la population non consanguine, alors qu'en cas de superdominance, elles auraient toutes dû obtenir des scores inférieurs.¦Dans la deuxième partie de mon projet, j'ai mesuré les capacités d'apprentissage de lignées isofemelles issues de la même population initiale que les lignées consanguines. Ces lignées sont issues chacune d'un seul couple, ce qui leur donne un taux d'hétérozygosité supérieur et évite l'élimination de lignées par fixation d'allèles délétères rares. Elles sont ainsi plus représentatives de la variabilité naturelle. Leur variabilité génétique est significative pour les capacités d'apprentissage, et trois traits liés à la fois à la fitness et à l'apprentissage: la viabilité, la résistance à l'infection bactérienne et la vitesse de développement. Cependant, la variabilité des capacités d'apprentissage n'apparaît cette fois pas inférieure à celle des autres traits et aucune corrélation n'est constatée entre les capacité d'apprentissage et les autres traits. Ceci suggère que la corrélation observée auparavant était surtout due à la fixation d'allèles récessifs délétères également responsables de la dépression de consanguinité.¦Durant la troisième partie de mon projet, je me suis penchée sur la décomposition de la variance observée entre les lignées consanguines observée en partie 1. Quatre composants ont été examinés: la variance due à des effets nucléaires (additifs et non additifs), et due à des effets parentaux (maternels et paternels). J'ai réalisé un croisement diallèle de toutes les lignées. La variance additive nucléaire s'est révélée supérieure aux autres composants pour les capacités d'apprentissage et la résistance à l'infection bactérienne. Par contre, les effets maternels étaient plus importants que les autres composants pour les traits développementaux (viabilité et vitesse de développement). Ceci suggère que les effets maternels, dus à G ADN mitochondrial, à l'épistasie ou à la quantité de nutriments investis dans l'oeuf par la mère, sont plus importants dans les premiers stades de développement et que leur effet s'estompe à l'âge adulte. Il n'y a en revanche pas de corrélation statistiquement significative entre les effets additifs des capacités d'apprentissage et des autres traits, ce qui indique encore une fois que la corrélation observée entre les capacités d'apprentissage et la viabilité dans la première partie du projet était due à des effets d'allèles partiellement récessifs.¦Au, final, mes résultats montrent bien l'existence d'une variabilité génétique pour les capacités d'apprentissage, et l'expérience du diallèle montre que la variance additive de cette capacité est importante, ce qui permet une réponse à la sélection naturelle. Toutes les lignées, consanguines ou isofemelles, ont obtenu des scores d'apprentissage supérieurs à zéro. Ceci suggère que les allèles supprimant les capacités d'apprentissage sont fortement contre-sélectionnés dans la nature Néanmoins, mes résultats ne peuvent pas expliquer le maintien de cette variabilité génétique par eux-même. Même si l'hypothèse de pléiotropie entre les capacités d'apprentissage et l'un des traits liés à la fitness que j'ai mesuré ne peut être éliminée, il n'y a aucune preuve d'un compromis évolutif pouvant contribuer au maintien de la variabilité.