944 resultados para Fatty acids


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Omega−3 polyunsaturated fatty acids (PUFAs) are essential components required for normal cellular function and have been shown to exert many preventive and therapeutic actions. The amount of n−3 PUFAs is insufficient in most Western people, whereas the level of n−6 PUFAs is relatively too high, with an n−6/n−3 ratio of >18. These two classes of PUFAs are metabolically and functionally distinct and often have important opposing physiological functions; their balance is important for homeostasis and normal development. Elevating tissue concentrations of n−3 PUFAs in mammals relies on chronic dietary intake of fat rich in n−3 PUFAs, because mammalian cells lack enzymatic activities necessary either to synthesize the precursor of n−3 PUFAs or to convert n−6 to n−3 PUFAs. Here we report that adenovirus-mediated introduction of the Caenorhabditis elegans fat-1 gene encoding an n−3 fatty acid desaturase into mammalian cells can quickly and effectively elevate the cellular n−3 PUFA contents and dramatically balance the ratio of n−6/n−3 PUFAs. Heterologous expression of the fat-1 gene in rat cardiac myocytes rendered cells capable of converting various n−6 PUFAs to the corresponding n−3 PUFAs, and changed the n−6/n−3 ratio from about 15:1 to 1:1. In addition, an eicosanoid derived from n−6 PUFA (i.e., arachidonic acid) was reduced significantly in the transgenic cells. This study demonstrates an effective approach to modifying fatty acid composition of mammalian cells and also provides a basis for potential applications of this gene transfer in experimental and clinical settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5°C. When seedlings of the two populations were grown at 14°C (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chloroplast glycerolipids in a number of higher-plant species, including Arabidopsis thaliana, are synthesized by two distinct pathways termed the prokaryotic and eukaryotic pathways. The molecules of galactolipids produced by the prokaryotic pathway contain substantial amounts of hexadecatrienoic acid fatty acid. Here we describe a new class of mutants, designated gly1, with reduced levels of hexadecatrienoic acid. Lipid fatty acid profiles indicated that gly1 mutants exhibited a reduced carbon flux through the prokaryotic pathway that was compensated for by an increased carbon flux through the eukaryotic pathway. Genetic and biochemical approaches revealed that the gly1 phenotype could not be explained by a deficiency in the enzymes of the prokaryotic pathway. The flux of fatty acids into the prokaryotic pathway is sensitive to changes in glycerol-3-phosphate (G3P) availability, and the chloroplast G3P pool can be increased by exogenous application of glycerol to leaves. Exogenous glycerol treatment of gly1 plants allowed chemical complementation of the mutant phenotype. These results are consistent with a mutant lesion affecting the G3P supply within the chloroplast. The gly1 mutants may therefore help in determining the pathway for synthesis of chloroplast G3P.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microspore-derived embryos of Brassica napus cv Reston were used to examine the effects of exogenous (+)-abscisic acid (ABA) and related compounds on the accumulation of very-long-chain monounsaturated fatty acids (VLCMFAs), VLCMFA elongase complex activity, and induction of the 3-ketoacyl-coenzyme A synthase (KCS) gene encoding the condensing enzyme of the VLCMFA elongation system. Of the concentrations tested, (+)-ABA at 10 μm showed the strongest effect. Maximum activity of the elongase complex, observed 6 h after 10 μm (+)-ABA treatment, was 60% higher than that of the untreated embryos at 24 h. The transcript of the KCS gene was induced by 10 μm (+)-ABA within 1 h and further increased up to 6 h. The VLCMFAs eicosenoic acid (20:1) and erucoic acid (22:1) increased by 1.5- to 2-fold in embryos treated with (+)-ABA for 72 h. Also, (+)-8′-methylene ABA, which is metabolized more slowly than ABA, had a stronger ABA-like effect on the KCS gene transcription, elongase complex activity (28% higher), and level of VLCMFAs (25–30% higher) than ABA. After 24 h approximately 60% of the added (+)-[3H]ABA (10 μm) was metabolized, yielding labeled phaseic and dihydrophaseic acid. This study demonstrates that (+)-ABA promotes VLCMFA biosynthesis via increased expression of the KCS gene and that reducing ABA catabolism would increase VLCMFAs in microspore-derived embryos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main function of white adipose tissue is to store nutrient energy in the form of triglycerides. The mechanism by which free fatty acids (FFA) move into and out of the adipocyte has not been resolved. We show here that changes in intracellular pH (pH1) in adipocytes correlate with the movement of FFA across cellular membranes as predicted by the Kamp and Hamilton model of passive diffusion of FFA. Exposure of fat cells to lipolytic agents or external FFA results is a rapid intracellular acidification that is reversed by metabolism of the FFA or its removal by albumin. In contrast, insulin causes an alkalinization of the cell, consistent with its main function to promote esterification. Inhibition of Na+/H+ exchange in adipocytes does not prevent the changes in pHi caused by FFA, lipolytic agents, or insulin. A fatty acid dimer, which diffuses into the cell but is not metabolized, causes an irreversible acidification. Taken together, the data suggest that changes in pHi occur in adipocytes in response to the passive diffusion of un-ionized FFA (flip-flop) into and out of the cell and in response to their metabolism and production within the cell. These changes in pHi may, in turn, modulate hormonal signaling and metabolism with significant impact on cell function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An adipocyte membrane glycoprotein, (FAT), homologous to human CD36, has been previously implicated in the binding/transport of long-chain fatty acids. It bound reactive derivatives of long-chain fatty acids and binding was specific and associated with significant inhibition of fatty acid uptake. Tissue distribution of the protein and regulation of its expression were also consistent with its postulated role. In this report, we have examined the effects of FAT expression on rates and properties of fatty acid uptake by Ob17PY fibroblasts lacking the protein. Three clones (P21, P22, and P25) were selected based on FAT mRNA and protein levels. Cell surface labeling could be demonstrated with the anti-CD36 antibody FITC-OKM5. In line with this, the major fraction of immunoreactive FAT was associated with the plasma membrane fraction. Assays of oleate and/or palmitate uptake demonstrated higher rates in the three FAT-expressing clones, compared to cells transfected with the empty vector. Clone P21, which had the highest protein levels on Western blots, exhibited the largest increase in transport rates. Fatty acid uptake in FAT-expressing P21 cells reflected two components, a phloretin-sensitive high-affinity saturable component with a Km of 0.004 microM and a basal phloretin-insensitive component that was a linear function of unbound fatty acid. P21 cells incorporated more exogenous fatty acid into phospholipids, indicating that binding of fatty acids was followed by their transfer into the cell and that both processes were increased by FAT expression. The data support the interpretation that FAT/CD36 functions as a high-affinity membrane receptor/transporter for long-chain fatty acids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is becoming clear that an adequate level of long-chain highly unsaturated fatty acids in the nervous system is required for optimal function and development; however, the ability of infants to biosynthesize long-chain fatty acids is unknown. This study explores the capacity of human infants to convert 18-carbon essential fatty acids to their elongated and desaturated forms, in vivo. A newly developed gas chromatography/negative chemical ionization/mass spectrometry method employing 2H-labeled essential fatty acids allowed assessment of this in vivo conversion with very high sensitivity and selectivity. Our results demonstrate that human infants have the capacity to convert dietary essential fatty acids administered enterally as 2H-labeled ethyl esters to their longer-chain derivatives, transport them to plasma, and incorporate them into membrane lipids. The in vivo conversion of linoleic acid (18:2n6) to arachidonic acid (20:4n6) is demonstrated in human beings. All elongases/desaturases necessary for the conversion of linolenic acid (18:3n3) to docosahexaenoic acid (22:6n3) are also active in the first week after birth. Although the absolute amounts of n-3 fatty acid metabolites accumulated in plasma are greater than those of the n-6 family, estimates of the endogenous pools of 18:2n6 and 18:3n3 indicate that n-6 fatty acid conversion rates are greater than those of the n-3 family. While these data clearly demonstrate the capability of infants to biosynthesize 22:6n3, a lipid that is required for optimal neural development, the amounts produced in vivo from 18:3n3 may be inadequate to support the 22:6n3 level observed in breast-fed infants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The gut contents and fatty acid composition of 49 fish belonging to five Antarctic demersal families (Nototheniidae, Macrouridae, Channichtyidae, Bathydraconidae and Artedidraconidae) sampled at two stations at the Southern Ocean shelf and deep sea (600 and 2150 m) were analysed in order to identify their main food resource by linking trophic biomarkers with the dietary items found in the fish guts. Main food items of most fish analysed were amphipod crustaceans (e.g. in 63% of Trematomus bernachii guts) and polychaetes (e.g. in 80% of Bathydraco sp. guts), but other food items including fish, other crustaceans and gastropods were also ingested. The most prominent fatty acids found were 20:5(n-3), 16:0, 22:6(n-3) and 18:1(n-9). The results of gut content and fatty acid analyses indicate that all fish except the Channichthyidae share similar food resources irrespective of their depth distribution, i.e. benthic amphipods and polychaetes. A difference of the dietary spectrum can be observed with ontogenetic phases rather than between species, as high values of typical calanoid copepod marker fatty acids as 22:1(n-11) indicate that younger (smaller) specimens include more zooplankton in their diet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The copepod Calanus glacialis plays a key role in the lipid-based energy flux in Arctic shelf seas. By utilizing both ice algae and phytoplankton, this species is able to extend its growth season considerably in these seasonally ice-covered seas. This study investigated the impacts of the variability in timing and extent of the ice algal bloom on the reproduction and population success of C. glacialis. The vertical distribution, reproduction, amount of storage lipids, stable isotopes, fatty acid and fatty alcohol composition of C. glacialis were assessed during the Circumpolar Flaw Lead System Study. Data were collected in the Amundsen Gulf, south-eastern Beaufort Sea, from January to July 2008 with the core-sampling from March to April. The reduction in sea ice thickness and coverage observed in the Amundsen Gulf in 2007 and 2008 affected the life strategy and reproduction of C. glacialis. Developmental stages CIII and CIV dominated the overwintering population, which resulted in the presence of very few CV and females during spring 2008. Spawning began at the peak of the ice algal bloom that preceded the precocious May ice break-up. Although the main recruitment may have occurred later in the season, low abundance of females combined with a potential mismatch between egg production/development to the first feeding stage and phytoplankton bloom resulted in low recruitment of C. glacialis in the early summer of 2008.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Use of Duclaux method on various substances" (bibliography): p. 235-236. Bibliography: p. 245-277.