987 resultados para F359I POINT MUTATION
Resumo:
This work studies the major sports overload injuries of the lower extremities from the biomechanical point of view. At the same time, the main paradigms of podiatric biomechanics and the application of new biomechanical theories in the study of these lesions are reviewed. With current legislation, clinical gait biomechanical studies should be carried out in health centres and the only health professionals who can perform them are podiatrists and doctors (because they both can diagnose). Graduates in physical education can carry out studies in the field or in the sports court for the sole purpose of improving athletic performance, but never intended to treat a pathology overload.
Resumo:
Background: Ischaemic heart disease (IHD) is a complex disease due to the combination of environmental and genetic factors. Mutations in the MEF2A gene have recently been reported in patients with IHD. In particular, a 21 base pair deletion (Δ7aa) in the MEF2A gene was identified in a family with an autosomal dominant pattern of inheritance of IHD. We investigated this region of the MEF2A gene using an Irish family-based study, where affected individuals had early-onset IHD. Methods: A total of 1494 individuals from 580 families were included (800 discordant sib-pairs and 64 parent-child trios). The Δ7aa region of the MEF2A gene was investigated based on amplicon size. Results: The Δ7aa mutation was not detected in any individual. Variation in the number of CAG (glutamate) and CCG (proline) residues was detected in a nearby region. However, this was not found to be associated with IHD. Conclusion: The Δ7aa mutation was not detected in any individual within the study population and is unlikely to play a significant role in the development of IHD in Ireland. Using family-based tests of association the number of tri-nucleotide repeats in a nearby region of the MEF2A gene was not associated with IHD in our study group. © 2006 Horan et al; licensee BioMed Central Ltd.