1000 resultados para Expression corporelle
Resumo:
The human epidermal growth factor (hEGF) is a small single-chain polypeptide of 53 amino acid residues. It can stimulate the proliferation of many cell types, mainly those of epidermal and epithelial tissues both in vivo and in vitro. A vector pRL-hEGF was constructed using plasmids pRL-489 and pUC-hEGF. The synthetic hEGF gene was recombined into the downstream of strong promoter psbA in plasmids pRL-489. Then, the vector was introduced into Synechococcus sp. PCC 7002 and Anabaena sp. PCC 7120 by triparental conjugative transfer. The transformation was confirmed by PCR amplification. The pRL-hEGF is thought to be retained as a plasmid form in the transgenic Anabaena sp. PCC 7120, since it can be recovered. However, it has been integrated into the chromosome of Synechococcus sp. PCC 7002 as there is no duplication origin in the pRL-hEGF in this cyanobacterium. and plasmid cannot be isolated from the Synechococcus sp. PCC 7002 either. The radioimmunoassay (RIA) proved that the hEGF gene has been expressed as the protein existed in these two strains of transgenic cyanobacteria, and the hEGF protein in Anabaena sp. PCC 7002 could be secreted into the medium.
Resumo:
The effects of N (NaNO3) and C (NaAc) source in medium on the expression of tumor necrosis factor-alpha (TNF-alpha) gene in transgenic Anabaena sp. PCC 7120 were compared. The data showed that N source stabilized the expression of foreign protein and C source altered the synthesis of cell walls. Comparing several methods for breaking the cells, supersonic was able to extract TNF-alpha better than others. For purification of TNF-alpha, transgenic Anabaena cells were broken, the extracts were precipitated with ammonia sulfate, and the impure TNF-alpha was eluted from DEAE ion exchange chromatography. Electrophoresis (PAGE-SDS) showed a single band at 17 kD position.
Resumo:
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.
Resumo:
Mesoderm formation plays a crucial role in the establishment of the chordate body plan. In this regard, lancelet embryos develop structures such as the anteriorly extended notochord and the lateral divertecula in their anterior body. To elucidate the developmental basis of these structures, we examined the expression pattern of a lancelet twist-related gene, Bbtwist, from the late gastrula to larval stages. In late-gastrula embryos, the transcripts of Bbtwist were detected in the presumptive first pair of somites and the middorsal wall of the primitive gut. The expression of Bbtwist was then upregulated in the lateral wall of somites and the notochord. At the late-neurula stage, it was also expressed in the anterior wall of the primitive gut, as well as in the evaginating lateral diverticula. No signal was detected in the left lateral diverticulum when it was separated from the gut, while in the right one, the gene was expressed later during the formation of the head coelom in knife-shaped larvae, and in the anterior part of the notochord in the same larvae. In 36-h larvae, only faint expression was detected in the differentiating notochordal and paraxial mesoderm in the caudal region. These expression patterns suggest that Bbtwist is involved in early differentiation of mesodermal subsets as seen in Drosophila and vertebrates. The expression in the anterior notochord may be related to its anterior expansion. The expression in the anterior wall of the primitive gut and its derivative, the lateral diverticula, suggests that lancelets share the capability to produce a mesodermal population from the tip of the primitive gut with nonchordate deuterostome embryos. (C) 1998 Academic Press.
Resumo:
The translationally controlled tumor protein (TCTP) is highly conserved and has been widely found in eukaryotic organisms. Here, we report the phylogenetic analysis and developmental expression of AmphiTCTP, a TCTP homologous gene in cephalochordate amphioxus. Phylogenetic analysis indicates that the putative protein of AmphiTCTP is close to its vertebrate orthologs. The mRNA of AmphiTCTP is found in fertilized eggs, early cleavage embryo and most of the early developmental stages by in situ hybridization and RT-PCR, but its expression is not detectable from late cleavage stage to mid-gastrula. The expression of AmphiTCTP in zygotes and early cleavage stages shows that AmphiTCTP may be a maternal gene. From the early neurula stage onward, AmphiTCTP transcript is localized in the presumptive notochord, presomitic mesoderm, and nascent somites. However, its expression is gradually down-regulated after the notochord and somites have been formed. The expression pattern of AmphiTCTP thus coincides with the differentiation of the notochord and somites, this suggests that AmphiTCTP may not be a housekeeping gene and may play an important role in mesoderm development. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Prophenoloxidase (proPO) is a conserved copper-containing enzyme that plays important roles in immune response of crustaceans and insects. In the present study, the full-length cDNA of a prophenoloxidase (designated EsproPO) was cloned from haemocytes of Chinese mitten crab Eriocheir sinensis by expressed sequence tag (EST) and PCR techniques. The isolated 3549 bp full-length cDNA of EsproPO contained a 2040 bp open reading frame (ORF) encoding a putative proPO protein of 679 amino acids, a 5'-untranslated region (UTR) of 68 bp, and a long 3'-UTR of 1441 bp. Two putative copper-binding sites, a proteolytic activation site, and a complement-like motif (GCGWPQHM) were identified in the deduced amino acid sequence of EsproPO. Homology analysis revealed that EsproPO was highly similar to other proPOs from crustaceans with identities from 52% to 68%. The conserved domains and motifs, and higher similarity with other proPOs suggested that EsproPO was a member of the proPO family. The mRNA expression of EsproPO and PO specific activities in the tissues of hepatopancreas, gill, gonad, muscle, heart, eye and haemocytes were measured by quantitative real-time PCR and colorimetric assay, respectively. The mRNA transcripts of EsproPO and PO specific activities could be detected in all the examined tissues with the highest level both in hepatopancreas. Three peaks of EsproPO mRNA expression were recorded at 2 h, 12 h and 48 h in haemocytes of Chinese mitten crab post Vibrio anguillarum challenge, which was consistent with the temporal profile of PO specific activity. The mRNA expression pattern and the activity fluctuation of EsproPO post V. anguillarum stimulation indicated that it was potentially involved in the acute response against invading bacteria in Chinese mitten crab. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The pacifastin family, characterized by several conserved arrays of six cysteine residues, is a newly identified serine protease inhibitor (SPI) family discovered uniquely in arthropods and plays important roles in multiple biological processes. In the present study, the full-length cDNA of a pacifastin light chain (designated ESPLC) was cloned from the Chinese mitten crab Eriocheir sinensis by expressed sequence tags (ESTs) and PCR techniques. The 1036 bp ESPLC cDNA contained an 831 bp open reading frame (ORF) encoding a putative pacifastin-related peptide of 276 amino acids, a 5'-untranslated region (UTR) of 67 bp, and a 3'-UTR of 138 bp. Six putative conserved domains sharing a characteristic cysteine array (Cys-Xaa(9-12)-Cys-Asn-Xaa-Cys-Xaa-Cys-Xaa(2-3)-Gly-Xaa(3-4)-Cys-Thr-Xaa(3)-Cys) were identified in the deduced amino acid sequence of ESPLC. The conservation of these PLDs (pacifastin light chain domains) and the relative higher similarity of ESPLC to other pacifastin-related precursors suggested that ESPLC was a member of pacifastin family. The mRNA transcripts of ESPLC were found to be higher expressed in hepatopancreas, gill and haemolymph than in gonad, muscle and heart, with the highest expression level in hepatopancreas. The ESPLC mRNA expression in haemolymph of Chinese mitten crab was up-regulated at 2 h and 12 h after challenged with Listonella anguillarum. The tissue distribution and temporal characteristics of ESPLC mRNA expression, similar to that of prophenoloxidase gene in E. sinensis, suggested that ESPLC was potentially involved in the response against invading bacteria, with the possibility that it functioned in the prophenoloxidase system in E sinensis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. The full-length cDNA of Zhikong scallop Chlamysfarreri HSP90 (designated CfHSP90) was cloned by EST and rapid RACE techniques. It was of 2710 bp, including an open reading frame (ORF) of 2181 bp encoding a polypeptide of 726 amino acids with all the five HSP90 family signatures. BLAST analysis revealed that the CfHSP90 gene shared high similarity with other known HSP90 genes. Fluorescent real-time quantitative RT-PCR was used to examine the expression pattern of CfHSP90 mRNA in haemocytes of scallops exposed to Cd2+, Pb2+ and Cu2+ for 10 and 20 days, respectively. All the three heavy metals could induce CfHSP90 expression. There was a clear dose-dependent expression pattern of CfHSP90 after heavy metals exposure for 10 days or 20 days. Different concentrations of the same metal resulted in different effects on CfHSP90 expression. The results indicated that CfHSP90 responded to various heavy metal stresses with a dose-dependent expression pattern as well as exposure time effect, and could be used as a molecular biomarker in a heavy metal polluted environment. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays key roles in the folding, maintenance of structural integrity and regulation of a subset of cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted molecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expression level of AiHSP90 transcript was up-regulated and reached maximal. level at 9 h after injection, and then dropped progressively to the original level at about 48 h post challenge. The results indicated that AiHSP90 was potentially involved in the immune responses against bacteria challenge in scallop A. irradian. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Lectin is regarded as a potential molecule involved in immune recognition and phagocytosis through opsonization in crustacean. Knowledge on lectin at molecular level would help us to understand its regulation mechanism in crustacean immune system. A novel C-type lectin gene (Fclectin) was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1482 bp with an 861 bp open reading frame, encoding 287 amino acids. The deduced amino acid sequence contains a putative signal peptide of 19 amino acids. It also contains two carbohydrate recognition domains/C-type lectin-like domains (CRD1 and CRD2), which share 78% identity with each other. CRD1 and CRD2 showed 34% and 30% identity with that of mannose-binding lectin from Japanese lamprey (Lethenteron japonicum), respectively. Both CRD1 and CRD2 of Fclectin have I I amino acids residues, which are relatively invariant in animals' C-type lectin CRDs. Five residues at Ca2+ binding site I are conserved in Fclectin. The potential Ca2+/carbohydrate-binding (site 2) motif QPD, E, NP (Gln-Pro-Asp, Glu, Asn-Pro) presented in the two CRDs of Fclectin may support its ability to bind galactose-type sugars. It could be deduced that Fclectin is a member of C-type lectin superfamily. Transcripts of Fclectin were found only in hemocytes by Northern blotting and RNA in situ hybridization. The variation of mRNA transcription level in hemocytes during artificial infection with bacteria and white spot syndrome virus (WSSV) was quantitated by capillary electrophoresis after RT-PCR. An exploration of mRNA expression variation after LPS stimulation was carried out in primarily cultured hemocytes in vitro. Expression profiles of Fclectin gene were greatly modified after bacteria, LPS or WSSV challenge. The above-stated data can provide us clues to understand the probable role of C-type lectin in innate immunity of shrimp and would be helpful to shrimp disease control. (c) 2006 Elsevier Ltd. All rights reserved.
Molecular coordinated regulation of gene expression during ovarian development in the penaeid shrimp
Resumo:
To understand the molecular events of ovarian development in penaeid shrimp, RNA arbitrarily primed polymerase chain reaction (RAP-PCR) was used to identify differentially expressed genes during ovarian maturation in Metapenaeus ensis. From a screening of 700 clones in a cDNA library of the shrimp ovary by the products of RAP-PCR of different maturation stages, 91 fragments with differentially expressed pattern as revealed by dot-blot hybridization were isolated and sequenced. Forty-two of these fragments show significant sequence similarity to known gene products and the differentially expressed pattern of 10 putative genes were further characterized via Northern hybridization. Putative glyceraldehyde-3-phosphate dehydrogenase and arginine kinase are related to provision of energy for active cellular function in oocyte development. Translationally controlled tumor protein, actin, and keratin are related to the organization of cytoskeleton to accomplish growth and development of oocytes. High mobility group protein DSP1, heat shock protein 70, and nucleoside diphosphate kinase may act as repressors before the onset of ovarian maturation. Peptidyl-prolyl cis-trans isomerase and glutathione peroxidase are related to the stabilization of proteins and oocytes. This study provides new insights on the molecular events in the ovarian development in the shrimp.
Resumo:
Calreticulin (CRT), as an endoplasmic reticulum luminal resident protein, plays important roles in Ca2+ homeostasis and molecular chaperoning. CRT on the surface of the cell can modulate cell adhesion, phagocytosis and integrin-dependent Ca2+ signaling. The full length cDNA of calreticulin (FcCRT) was cloned from Chinese shrimp Fenneropenaeus chinensis. It consists of 1672 by with an open reading frame of 1221 bp, encoding 406 amino acids. This is the first reported cDNA sequence of calreticulin in Crustacea. The deduced amino acid sequence of FcCRT showed high identity with those of Bombyx mori (88%), Drosophila melanogaster (83%), Mus musculus (82%) and Homo sapiens (82%). Highest expression of FcCRT was detected in ovary by Northern blot and in situ hybridization. Different mRNA levels of FcCRT were detected at various molting stages. Expression of FcCRT was induced significantly after 3 h of heat shock treatment, reached the maximum at 4 h and dropped after that. Differential expression profiles of FcCRT were observed in hepatopancreas and haemocytes when shrimp were challenged by white spot syndrome virus (WSSV). From the above results, we inferred that FcCRT might play important roles in Ca2+ homeostasis, chaperoning and immune function in shrimp. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Peptidoglycan recognition proteins (PGRPs) are a type of pattern recognition molecules (PRM) that recognize the unique cell wall component peptidoglycan (PGN) of bacteria and are involved in innate immunity. The first bivalve PGRP cDNA sequence was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and PCR technique. The full-length cDNA of bay scallop PGRP (designated AiPGRP) gene contained 10 18 bp with a 615-bp open reading frame that encoded a polypeptide of 205 amino acids. The predicted amino acid sequence of AiPGRP shared high identity with PGRP in other organisms, such as PGRP precursor in Trichoplusia ni and PGRP SC2 in Drosophila melanogaster. A quantitative reverse transcriptase Real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of AiPGRP in different tissues and the temporal expression of AiPGRP in the mixed primary cultured hemocytes challenged by microbial components lipopolyssacharide (LPS) from Escherichia coli and PGN from Micrococcus luteus. Higher-level mRNA expression of AiPGRP was detected in the tissues of hemocytes, gonad and kidney. The expression of AiPGRP in the mixed primary cultured hemocytes was up regulated after stimulated by PGN, while LPS from E. coli did not induce AiPGRP expression. The results indicated that AiPGRP was a constitutive and inducible expressed protein that was mainly induced by PGN and could be involved in scallop immune response against Gram-positive bacteria infection. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Cu, Zn superoxide dismutases (SODs) are rnetalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu. Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu. Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea sostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. litteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection. (C) 2007 Elsevier Ltd. All rights reserved.