923 resultados para Exponential financial models
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
This paper considers the potential for profit within state-owned enterprises [SOEs] as part of the privatisation debate, through an examination of New Zealand’s SOE sector from 2006 to 2010, extending and comparing findings of an earlier study from 2001 to 2005.
Resumo:
Existing techniques for automated discovery of process models from event logs largely focus on extracting flat process models. In other words, they fail to exploit the notion of subprocess, as well as structured error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events, and loop and multi-instance markers. The technique analyzes dependencies between data attributes associated with events, in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered separately using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process model discovery techniques.
Resumo:
Integer ambiguity resolution is an indispensable procedure for all high precision GNSS applications. The correctness of the estimated integer ambiguities is the key to achieving highly reliable positioning, but the solution cannot be validated with classical hypothesis testing methods. The integer aperture estimation theory unifies all existing ambiguity validation tests and provides a new prospective to review existing methods, which enables us to have a better understanding on the ambiguity validation problem. This contribution analyses two simple but efficient ambiguity validation test methods, ratio test and difference test, from three aspects: acceptance region, probability basis and numerical results. The major contribution of this paper can be summarized as: (1) The ratio test acceptance region is overlap of ellipsoids while the difference test acceptance region is overlap of half-spaces. (2) The probability basis of these two popular tests is firstly analyzed. The difference test is an approximation to optimal integer aperture, while the ratio test follows an exponential relationship in probability. (3) The limitations of the two tests are firstly identified. The two tests may under-evaluate the failure risk if the model is not strong enough or the float ambiguities fall in particular region. (4) Extensive numerical results are used to compare the performance of these two tests. The simulation results show the ratio test outperforms the difference test in some models while difference test performs better in other models. Particularly in the medium baseline kinematic model, the difference tests outperforms the ratio test, the superiority is independent on frequency number, observation noise, satellite geometry, while it depends on success rate and failure rate tolerance. Smaller failure rate leads to larger performance discrepancy.
Resumo:
Invasion of extracellular matrices is crucial to a number of physiological and pathophysiological states, including tumor cell metastasis, arthritis, embryo implantation, wound healing, and early development. To isolate invasion from the additional complexities of these scenarios a number of in vitro invasion assays have been developed over the years. Early studies employed intact tissues, like denuded amniotic membrane (1) or embryonic chick heart fragments (2), however recently, purified matrix components or complex matrix extracts have been used to provide more uniform and often more rapid analyses (for examples, see the following integrin studies). Of course, the more holistic view of invasion offered in the earlier assays is valuable and cannot be fully reproduced in these more rapid assays, but advantages of reproducibility among replicates, ease of preparation and analysis, and overall high throughput favor the newer assays. In this chapter, we will focus on providing detailed protocols for Matrigel-based assays (Matrigel=reconstituted basement membrane; reviewed in ref. (3)). Matrigel is an extract from the transplantable Engelbreth-Holm-Swarm murine sarcoma that deposits a multilammelar basement membrane. Matrigel is available commercially (Becton Dickinson, Bedford, MA), and can be manipulated as a liquid at 4°C into a variety of different formats. Alternatively, cell culture inserts precoated with Matrigel can be purchased for even greater simplicity.
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
In 1993 the Auditing Practices Board issued an expanded audit report, SAS 600 Auditors’ Reports on Financial Statements, in an attempt to educate users and to clarify certain matters pertaining to the audit function. This paper investigates the extent to which the new audit report, SAS 600, has been successful in aligning the views of auditors, preparers and users about issues dealt with in the expanded audit report, and the extent to which the three groups considered that it would be useful for additional matters, including corporate governance, to be reported upon by the auditor. Our findings suggest that SAS 600 has been successful in clarifying the purpose of the audit and the respective responsibilities of auditors and directors. However, to meet the expectations of users and to add more value, the audit report needs to provide more information about the findings of the audit.
Resumo:
There is a wide variety of drivers for business process modelling initiatives, reaching from business evolution and process optimisation over compliance checking and process certification to process enactment. That, in turn, results in models that differ in content due to serving different purposes. In particular, processes are modelled on different abstraction levels and assume different perspectives. Vertical alignment of process models aims at handling these deviations. While the advantages of such an alignment for inter-model analysis and change propagation are out of question, a number of challenges has still to be addressed. In this paper, we discuss three main challenges for vertical alignment in detail. Against this background, the potential application of techniques from the field of process integration is critically assessed. Based thereon, we identify specific research questions that guide the design of a framework for model alignment.
Resumo:
This thesis investigates the use of building information models for access control and security applications in critical infrastructures and complex building environments. It examines current problems in security management for physical and logical access control and proposes novel solutions that exploit the detailed information available in building information models. The project was carried out as part of the Airports of the Future Project and the research was modelled based on real-world problems identified in collaboration with our industry partners in the project.
Resumo:
In this chapter we will make the transition towards the design of business models and the related critical issues. We develop a model that helps us understand the causalities that play a role in understanding the viability and feasibility of the business models, i.e. long-term profitability and market adoption. We argue that designing viable business models requires balancing the requirements and interests of the actors involved, within and between the various business model domains. Requirements in the service domain guide the design choices in the technology domain, which in turn affect network formation and the financial arrangements. It is important to understand the Critical Design Issues (CDIs) involved in business models and their interdependencies. In this chapter, we present the Critical Design Issues involved in designing mobile service business models, and demonstrate how they are linked to the Critical Success Factors (CSFs) with regard to business model viability. This results in a causal model for understanding business model viability, as well as providing grounding for the business model design approach outlined in Chapter 5.
Resumo:
Many research and development projects that are carried out by firms and research institutes are technology-oriented. There is a large gap between research results, for instance in the form of prototypes, and the actual service offerings to customers. This becomes problematic when an organization wants to bring the results from such a project to the market, which will be particularly troublesome when the research results do not readily fit traditional offerings, roles and capabilities in the industry, nor the financial arrangements. In this chapter, we discuss the design of a business model for a mobile health service, starting with a research prototype that was developed for patients with chronic lower back pain, using the STOF model and method. In a number of design sessions, an initial business model was developed that identifies critical design issues that play a role in moving from prototype toward market deployment. The business model serves as a starting-point to identify and commit relevant stakeholders, and to draw up a business plan and case. This chapter is structured as follows. We begin by discussing the need for mobile health business models. Next, the research and development project on mobile health and the prototype for chronic lower back pain patients are introduced, after which the approach used to develop the business model is described, followed by a discussion of the developed mobile health business model for each of the STOF domains. We conclude with a discussion regarding the lessons that were learned with respect to the development of a business model on the basis of a prototype.
Resumo:
Globalization, financial deregulation, economic turmoil, and technology breakthroughs are profoundly exposing organizations to business networks. Engaging these networks requires explicit planning from the strategic level down to the operational level of an organization, which significantly affects organizational artefacts such as business services, processes, and resources. Although enterprise architecture (EA) aligns business and IT aspects of organizational systems, previous applications of EA have not comprehensively addressed a methodological framework for planning. In the context of business networks, this study seeks to explore the application of EA for business network planning where it builds upon relevant and well-established prescriptive and descriptive aspects of EA. Prescriptive aspects include integrated models of services, business processes, and resources among other organizational artefacts, at both business and IT levels. Descriptive aspects include ontological classifications of business functionality, which allow EA models to be aligned semantically to organizational artefacts and, ultimately higher-level business strategy. A prominent approach for capturing descriptive aspects of EA is business capability modelling. In order to explore and develop the illustrative extensions of EA through capability modelling, a list of requirements (capability dimensions) for business network planning will be identified and validated through a revelatory case study encompassing different business network manifestations, or situations. These include virtual organization, liquid workforce, business network orchestration, and headquarters-subsidiary. The use of artefacts, conventionally, modelled through EA will be considered in these network situations. Two general considerations for EA extensions are explored for the identified requirements at the level of the network: extension of artefacts through the network and alignment of network level artefacts with individual organization artefacts. The list of requirements provides the basis for a constructivist extension of EA in the following ways. Firstly, for descriptive aspects, it offers constructivist insights to guide extensions for particular EA techniques and concepts. Secondly, for prescriptive aspects it defines a set of capability dimensions, which improve the analysis and assessment of organization capabilities for business network situations.
Resumo:
This paper develops a semiparametric estimation approach for mixed count regression models based on series expansion for the unknown density of the unobserved heterogeneity. We use the generalized Laguerre series expansion around a gamma baseline density to model unobserved heterogeneity in a Poisson mixture model. We establish the consistency of the estimator and present a computational strategy to implement the proposed estimation techniques in the standard count model as well as in truncated, censored, and zero-inflated count regression models. Monte Carlo evidence shows that the finite sample behavior of the estimator is quite good. The paper applies the method to a model of individual shopping behavior. © 1999 Elsevier Science S.A. All rights reserved.