955 resultados para Ethanol conversion
Resumo:
Como a oportunidade de exportação de etanol combustível é muito recente, o agronegócio carece de literatura para formação de gestores e estrategistas. Este trabalho tem como objetivo descrever o mecanismo de formação de preços de etanol tanto no Brasil como nos Estados Unidos da America. Decupei as variáveis que impactam na formação de preços, custo de produção de etanol de cana-de-açúcar, custo da logística e desidratação no Caribe, custo do etanol de milho e fiz algumas análises de cenários de formação de preços das principais variáveis e consegui organizar este conhecimento em um gráfico que contém no eixo superior preço do etanol hidratado na usina no Brasil e no eixo inferior o preço do bushel de milho em Chicago cujas interceções nas retas da taxa do dólar e do preço do gás natural, fornecem no eixo Y o preço do produto no porto de Nova York, ficando uma visualização simples das possibilidades da janela de exportação. A metodologia permite assumir diferentes cenários de oferta, demanda e preços e estabelecer diferentes estratégias de comercialização.
Resumo:
A produção de etanol e a dominação da indústria, historicamente, tem sido uma fonte de discórdia para seus dois principais produtores. Os EUA com seu etanol de milho e o Brasil com sua etanol de cana, são os dois maiores produtores mundiais de etanol (1º EUA; 2º Brasil) e tem competido pela participação de mercado mundial há décadas. A partir de Dezembro de 2011, os EUA levantaram as tarifas e os subsídios que foram instalados para proteger sua indústria de etanol, o que muda o campo de jogo da produção mundial de etanol para o futuro. Atualmente em todo o mundo, o etanol é usado em uma proporção muito menor comparativamente a outros combustíveis. Esta pesquisa analisa o nível potencial de colaboração entre os EUA e o Brasil, facilitando um diálogo entre os stakeholders em etanol. A pesquisa consiste principalmente de conversas e entrevistas, com base em um conjunto de perguntas destinadas a inspirar conversas detalhadas e expansivas sobre os temas de relações Brasil-EUA e etanol. Esta pesquisa mostra que o etanol celulósico, que é também conhecido como etanol de segunda geração, oferece mais oportunidades de parceria entre os EUA e o Brasil, como há mais oportunidades para pesquisa e desenvolvimento em conjunto e transferência de tecnologia nesta área. Enquanto o etanol de cana no Brasil ainda é uma indústria próspera e crescente, o milho e a cana são muito diferentes geneticamente para aplicar as mesmas inovações exatas de um etanol de primeira geração, por outro. As semelhanças entre os processos de fermentação e destilação entre as matérias-primas utilizadas nos EUA e no Brasil para o etanol de segunda geração torna o investimento conjunto nesta área mais sensível. De segunda geração é uma resposta para a questão "alimentos versus combustíveis". Esta pesquisa aplica o modelo de co-opetição como um quadro de parceria entre os EUA e o Brasil em etanol celulósico. A pesquisa mostra que enquanto o etanol pode não ser um forte concorrente com o petróleo no futuro imediato, ele tem melhores perspectivas de ser desenvolvido como um complemento ao petróleo, em vez de um substituto. Como os EUA e o Brasil tem culturas de misturar etanol com petróleo, algo da estrutura para isso já está em vigor, a relação de complementaridade seria fortalecido através de uma política de governo clara e de longo prazo. A pesquisa sugere que apenas através desta colaboração, com toda a partilha de conhecimentos técnicos e estratégias econômicas e de desenvolvimento, o etanol celulósico será um commodity negociado mundialmente e uma alternativa viável a outros combustíveis. As entrevistas com os interessados em que esta pesquisa se baseia foram feitas ao longo de 2012. Como a indústria de etanol é muito dinâmica, certos eventos podem ter ocorrido desde esse tempo para modificar ou melhorar alguns dos argumentos apresentados.
Resumo:
Mercados são instituições criadas para facilitar uma atividade de comercialização. Isto é possível porque um mercado é constituído por instituições que foram desenhadas para reduzir os custos de transação associados a este processo de troca. A partir dessas duas ideias, esta tese possui três objetivos principais. (i) Analisar por que a literatura de análise de cointegração tem mensurado estes custos de forma imprecisa. A principal razão é certa confusão entre os conceitos de custos de transação, de transporte e de comercialização. (ii) Propor um procedimento para mensurar indiretamente os custos de transação de mercado variáveis combinando os modelos de cointegração com mudança de regime e a estrutura teórica oferecidas pela Nova Economia Institucional. Este procedimento é aplicado para quantificar quanto custa comercializar etanol no mercado internacional usando suas atuais instituições. (iii) Por fim, usando os mesmos modelos e a mesma estrutura teórica, esta dissertação contesta a hipótese de que já existe um mercado internacional de etanol bem desenvolvido, tal qual a literatura tem assumido. De forma semelhante, também é avaliada a hipótese de que a remoção das barreiras comerciais norte-americanas para o etanol brasileiro seria uma condição suficiente para o desenvolvimento deste mercado internacional. Os testes aplicados rejeitam ambas as hipóteses.
Resumo:
This article presents the application of a diagnosis method in a Brazilian company from the sugar and ethanol industry to identify the level of supply chain integration. The diagnosis method is based on Cooper, Lambert and Pagh reference model for SCM. The method involves nine referential axes established from the eighth key business processes of the reference model.
Resumo:
Efficient artificial activation is indispensable for the success of cloning programs. Strontium has been shown to effectively activate mouse oocytes for nuclear transfer procedures, however, there is limited information on its use for bovine oocytes. The present study had as objectives: (1) to assess the ability of strontium to induce activation and parthenogenetic development in bovine oocytes of different maturational ages in comparison with ethanol; and (2) to verify whether the combination of both treatments improves activation and parthenogenetic development rates. Bovine oocytes were in vitro matured for 24, 26, 28, and 30 h, and treated with ethanol (E, 7% for 5 min) or strontium chloride (S, 10 mM SrCl2 for 5 h) alone or in combination: ethanol + strontium (ES) and strontium + ethanol (SE). Activated oocytes were cultured in vitro in synthetic oviductal fluid (SOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage (M). Treatment with ethanol and strontium promoted similar results regarding pronuclear formation (E, 20-66.7%; S, 26.7-53.3%; P > 0.05) and cleavage (E, 12.8-40.6%; S, 16.1-41.9%; P > 0.05), regardless of oocyte age. The actions of both strontium and ethanol were influenced by oocyte age: ethanol induced greater activation rates after 28 and 30 h of maturation (48.4 and 66.7% versus 20.0 and 23.3% for 24 and 26 It, respectively; P < 0.05) and strontium after 30 It (53.3%) was superior to 24 and 26h (26.7% for both). Blastocyst development rates were minimal in all treatments (0.0-6.3%; P > 0.05), however, when the mean (+/-S.D.) cell number in blastocysts at the same maturational period was compared, strontium treatment was superior to ethanol for activation rates (82 +/- 5.7 and 89.5 +/- 7.8 versus 54 and 61, at 28 and 30 h, respectively). Improved results were obtained by combined treatments. The combination of ethanol and strontium resulted in similar pronuclear formation (ES, 36.7-83.9%; SE, 53.1-90.3%) and cleavage rates (ES, 31.3-81.3%; SE, 65.6-80.7%). Regarding embryo development, there was no difference (P > 0.05) between treatments, and blastocysts were only obtained in treatment SE at 24 and 26 h (6.5% for both). It is concluded that, SrCl2 induces activation and parthenogenetic development in bovine oocytes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production
Resumo:
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder due to an inborn error of cholesterol metabolism, characterized by congenital malformations, dysmorphism of multiple organs, mental retardation and delayed neuropsychomotor development resulting from cholesterol biosynthesis deficiency. A defect in 3ß-hydroxysteroid-delta7-reductase (delta7-sterol-reductase), responsible for the conversion of 7-dehydrocholesterol (7-DHC) to cholesterol, causes an increase in 7-DHC and frequently reduces plasma cholesterol levels. The clinical diagnosis of SLOS cannot always be conclusive because of the remarkable variability of clinical expression of the disorder. Thus, confirmation by the measurement of plasma 7-DHC levels is needed. In the present study, we used a simple, fast, and selective method based on ultraviolet spectrophotometry to measure 7-DHC in order to diagnose SLOS. 7-DHC was extracted serially from 200 µl plasma with ethanol and n-hexane and the absorbance at 234 and 282 nm was determined. The method was applied to negative control plasma samples from 23 normal individuals and from 6 cases of suspected SLOS. The method was adequate and reliable and 2 SLOS cases were diagnosed.
Resumo:
A preparation, enriched with malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), glycerol -3- P dehydrogenase (GPDH) and glycerol kinase (GK), was obtained from dry baker's yeast. This preparation was used to assay glycerol, ethanol and malate measuring the variations in absorbance (NADH formation) at 340 nm. Good degrees of recoveries were obtained when glycerol was added to red wine and fermenting sugar-cane juice and when L-malate was added to commercial apple juice samples. Good results were also obtained when ethanol was assayed in fermented sugar-cane juice and wine samples, using both the partially purified preparation obtained from dry yeast and a purified commercial alcohol dehydrogenase.
Resumo:
Three ranges of increasing temperatures (35-43, 37-45, 39-47degreesC) were sequentially applied to a five-stage system continuously operated with cell recycling so that differences of 2degreesC (between one reactor to the next) and 8degreesC (between the first reactor at the highest temperature and the fifth at the lowest temperature) were kept among the reactors for each temperature range. The entire system was fed through the first reactor. The lowest values of biomass and viability were obtained for reactor R-3 located in the middle of the system. The highest yield of biomass was obtained in the effluent when the system was operated at 35-43degreesC. This nonconventional system was set up to simulate the local fluctuations in temperature and nutrient concentrations that occur in different regions of the medium in an industrial bioreactor for fuel ethanol production mainly in tropical climates. Minimized cell death and continuous sugar utilization were observed at temperatures normally considered too high for Saccharomyces cerevisiae fermentations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There has been much discussion on the importance of Brazilian ethanol in promoting a more sustainable society. However, there is a lack of analysis of whether sugarcane plants/factories that produce this ethanol are environmentally suitable. Thus, the objective of this study was to analyse stages of environmental management at four Brazilian ethanol-producing plants, examining the management practices adopted and the factors behind this adoption. The results indicate that (1) only one of the four plants is in the environmentally proactive stage; (2) all plants are adopting operational and organisational environmental management practices; (3) all plants have problems in communicating environmental management practices; and (4) the plant with the most advanced environmental management makes intense use of communication practices and is strongly oriented towards a more environmentally aware international market. This paper is an attempt to explain the complex relationship between the evolution of environmental management, environmental practices and motivation using a framework. The implications for society, plant directors and scholars are described, as well as the study's limitations.