910 resultados para Escoles -- Catalunya -- Salt
Resumo:
Methysergide injected bilaterally into the lateral parabrachial nucleus (LPBN) increases NaCl intake in several models of renin-dependent salt appetite. The present study investigated the role of angiotensin Type 1 (AT(1)) receptors in the subfornical organ (SFO) on this effect. The intake of 0.3 M NaCl and water was induced by combined administration of the diuretic, furosemide (FURO), and the angiotensin-converting enzyme inhibitor, captopril (CAP). Pretreatment of the SFO with an AT, receptor antagonist, losartan (1 mu g/200 nl), reduced water intake but not 0.3 M NaCl intake induced by subcutaneous FURO + CAP. Methysergide (4 mu g/200 nl) injected bilaterally into the LPBN increased 0.3 M NaC1 intake after FURO + CAP. Losartan injected into the SFO prevented the additional 0.3 M NaC1 intake caused by LPBN methysergide injections. These results indicate that AT, receptors located in the SFO may have a role in mediating an enhanced sodium intake produced by methysergide treatment. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electrostatic interactions govern most properties of polyelectrolyte films, as in the photoinduced bire-fringence of azo-containing polymers. In this paper we report a systematic investigation of optical storage characteristics of cast and layer-by-layer (LbL) films of poly[1 -[4-(3-carboxy-4 hydroxypheny-lazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). Birefringence was photoinduced faster in PAZO cast films prepared at high pHs, with the characteristic writing times decreasing almost linearly with the pH in the range between 4 and 9. This was attributed to an increased free volume for the azochromophores with the enhanced electrostatic repulsion in PAZO charged to a greater extent. In contrast, in LbL films of PAZO alternated with poly(allylamine hydrochloride) (PAH), the electrostatic interactions between the oppositely charged polymers hampered photoisomerization and molecular rearrangement, thus leading to a slower writing kinetics for highly charged PAH or PAZO.
Resumo:
Sodium chloride intake was studied in male Holtzman rats weighing 250-300 g submitted to electrolytic and chemical lesion of the cell bodies, not fibers of the amygdaloid complex. Sodium chloride (1.5%) intake increased in animals with electrolytic lesion of the corticomedial nucleus of the amygdala. Sodium chloride (1.5%) intake increased after ibotenic acid injection into the corticomedial nucleus of the amygdala to a larger extent (26.6 +/- 9.2 to 147.6 +/- 34.6 ml/5 days). The results indicate that sodium intake response can be induced by lesions, which involved only cell bodies. The fibers of passage of the corticomedial nucleus of the amygdala produce a water intake less consistent than that induced by ibotenic acid, which is more acute. The results show that cell bodies of this region of the amygdala are involved in the control of sodium chloride intake.
Resumo:
The present study investigated the effects of bilateral injections of the nonselective CCK receptor antagonist proglumide or CCK-8 into the lateral parabrachial nuclei (LPBN) on the ingestion of 0.3 M NaCl and water induced by intracerebroventricular injection of ANG II or by a combined treatment with subcutaneous furosemide (Furo) + captopril (Cap). Compared with the injection of saline (vehicle), bilateral LPBN injections of proglumide (50 mu g . 200 nl(-1). site(-1)) increased the intake of 0.3 ill NaCl induced by intracerebroventricular ANG II (50 ng/1 mu l). Bilateral injections of proglumide into the LPBN also increased ANG II-induced water intake when NaCl was simultaneously available, but not when only water was present. Similarly, the ingestion of 0.3 M NaCl and water induced by the treatment with Furo (10 mg/kg) + Cap (5 mg/kg) was increased by bilateral LPBN proglumide pretreatment. Bilateral CCK-8 (0.5 mu g . 200 nl(-1). site(-1)) injections into the LPBN did not change Furo + Cap-induced 0.3 M NaCl intake but reduced water consumption. When only water was available after intracerebroventricular ANG II, bilateral LPBN injections of proglumide or CCK-8 had no effect or significantly reduced water intake compared with LPBN vehicle-treated rats. Taken together, these results suggest that CCK actions in the LPBN play a modulatory role on the control of NaCl and water intake induced by experimental treatments that induce hypovolemia and/or hypotension or that mimic those states.
Resumo:
The adaptive capacity of bean (Phaseolus vulgaris L.) calluses (cultivars IAC-carioca, JALO EEP-558, BAT-93 and IAPAR-14) to salt stress (0-80 mM) was verified to determine the existence of biochemical markers such as organic and inorganic compounds, and metabolism of polyamines. The results obtained demonstrate that salt (NaCl) interfered with all the parameters analyzed and its intensity ranged due to the salt concentration and the cultivars used.
Resumo:
Siloxane-polyoxypropylene (PPO) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with different sodium salts NaX (X = ClO4, BF4 or I). The effect of the counter-ion (X) on the chemical environment of the sodium ions and on the ionic conductivity of these hybrids was investigated by Na-23 NMR, small angle X-ray scattering (SAXS), complex impedance, Raman spectroscopy and differential scanning calorimetry (DSC). Results reveal that the different sodium salts have essentially the same effect on the nanoscopic structure of the hybrids. The formation of immobile Na+ cations involved in NaCl-like species could be minimized by using a low amount of HCl as hydrolytic catalyst. The differences in the ionic conductivity of hybrids doped with different sodium salts were correlated with the proportion of Na ions solvated by ether-type oxygen of the polymeric chains and by the carboxyl oxygen located in the urea groups of the PPO chain extremities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effects of the arachidonic acid metabolism inhibitors on the acetylcholine responses of aortae from control (CR) and deoxycorticosterone acetate (DOCA)-salt hypertensive (HR) rats were investigated. The acetylcholine decreased response observed in HR [relaxation (%): CR 95.5 +/- 2.7, n = 4; HR 52.0 +/- 6.3, n = 5, p < 0.05] was restored by the cyclooxygenase inhibitor piroxicam [relaxation (%): CR 99.8 +/- 0.2, n = 4; HR 86.0 +/- 4.0, n = 5] and by the thromboxane synthetase inhibitor and the thrombox ane A(2)/prostaglandin H-2 receptor antagonist ridogrel [relaxation (%): CR 92.1 +/- 4.4, n = 7; HR 93.1 +/- 2.0, n = 7] but not by the inhibitors of thromboxane synthetase, prostacyclin synthetase, cytochrome P-450 monooxygenase, and lipoxygenase. So, endoperoxide intermediates seem to be involved in the decreased endothelium-dependent relaxation to acetylcholine in DOCA-salt hypertension. (C) 1999 Elsevier B.V. All rights reserved.
Resumo:
Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.
Resumo:
This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus (LPBN) on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT1/2 receptor antagonist methysergide (4 mu g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.
Resumo:
The effect of carbachol (80 nmol/mul) injection into the amygdaloid nuclear complex (AMG) on sodium appetite and water intake was studied in male Holtzman rats weighing 240-270 g. Twenty-five satiated rats and 38 water-deprived rats were used in the experiment on water intake. In the experiment on sodium intake, 19 rats were injected with atropine + carbachol and 9 rats with hexamethonium + carbachol. After carbachol injection into the AMG, water intake decreased in rats submitted to 30 h of water deprivation (10.28 +/- 1.04 ml/120 min vs 0.69 +/- 0.22 ml/120 min). The decrease in water intake was blocked by prior local injection of a tropine (20 nmol/1 mul)(11.66 +/- 1.46 ml/120 min vs 0.69 +/- 0.22 ml/120 min), but not of hexamethonium (30 nmol/1 mul), into the AMG. In water-deprived animals, carbachol injection into the AMG caused a decrease in sodium chloride intake (6.16 +/- 1.82 ml/h vs 0.88 +/- 0.54 ml/h) which was blocked by previous injection of hexamethonium but not of a tropine. These results suggest that the cholinergic system of the AMG plays a role in the control of water and salt intake.
Resumo:
The K+ reversible processes for ion exchange in KhFek[Fe(CN)(6)](l)center dot mH(2)O host compounds (Prussian Blue) were thermodynamically analyzed. A thermodynamic approach was established and developed based on the consideration of a lattice-gas model where the electronic contribution to the chemical potential is neglected and the ion-host interaction is not considered. The occupation fraction of the intercalation process was calculated from the kinetic parameters obtained through ac-electrogravimetry in a previous paper. In this way, the mass potential transfer function introduces a new way to evaluate the thermodynamic aspect of intercalation. Finally, based on the thermodynamic approach, the energy used to put each K+ ion into the host material was calculated. The values were shown to be in good agreement with the values obtained through transient techniques, for example, cyclic voltammetry. As a result, this agreement between theory and experimental data validates the thermodynamic approach considered here, and for the first time, the thermodynamic aspects of insertion were considered for mixed valence materials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Species of the genera Candida grown in vinasse and molasses were studied under the following conditions: agitation of containers, pH 4.6, culture time of 24 hours at 30°C. The greatest biomass production of C. krusei grown in vinasse was obtained with the addition of 0.1% H3PO4, and of C. guilliermondii and C. utilis with the addition 0.02% urea plus 0.03% H3PO4. Protein levels near 50% were found in C. utilis in vinasse supplemented either with molasses, with 0.05% MgSO4, or with 0.02% urea plus 0.03% H3PO4. © 1982 Springer-Verlag.