996 resultados para Endodontics - Instrumentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Att övervaka förekomsten av giftiga komponenter i naturliga vattendrag är nödvändigt för människans välmående. Eftersom halten av föroreningar i naturens ekosystem bör hållas möjligast låg, pågår en ständig jakt efter kemiska analysmetoder med allt lägre detektionsgränser. I dagens läge görs miljöanalyser med dyr och sofistikerad instrumentering som kräver mycket underhåll. Jonselektiva elektroder har flera goda egenskaper som t.ex. bärbarhet, låg energiförbrukning, och dessutom är de relativt kostnadseffektiva. Att använda jonselektiva elektroder vid miljöanalyser är möjligt om deras känslighetsområde kan utvidgas genom att sänka deras detektionsgränser. För att sänka detektionsgränsen för Pb(II)-selektiva elektroder undersöktes olika typer av jonselektiva membran som baserades på polyakrylat-kopolymerer, PVC och PbS/Ag2S. Fast-fas elektroder med membran av PbS/Ag2S är i allmänhet enklare och mer robusta än konventionella elektroder vid spårämnesanalys av joniska föroreningar. Fast-fas elektrodernas detektionsgräns sänktes i detta arbete med en nyutvecklad galvanostatisk polariseringsmetod och de kunde sedan framgångsrikt användas för kvantitativa bestämningar av bly(II)-halter i miljöprov som hade samlats in i den finska skärgården nära tidigare industriområden. Analysresultaten som erhölls med jonselektiva elektroder bekräftades med andra analytiska metoder. Att sänka detektionsgränsen m.hj.a. den nyutvecklade polariseringsmetoden möjliggör bestämning av låga och ultra-låga blyhalter som inte kunde nås med klassisk potentiometri. Den verkliga fördelen med att använda dessa blyselektiva elektroder är möjligheten att utföra mätningar i obehandlade miljöprov trots närvaron av fasta partiklar vilket inte är möjligt att göra med andra analysmetoder. Jag väntar mig att den nyutvecklade polariseringsmetoden kommer att sätta en trend i spårämnesanalys med jonselektiva elektroder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is no large series about retained foreign bodies in abdominal cavity. In fact data are underestimated because of the lack of reports considering its serious medicolegal implications. An inflammatory fibrotic process inside the peritoneal cavity, a virtual discharge of inorganic material through the surgical incision and also a slow process of transmural migration into the intestinal lumen are the most frequent pathophysiologic situations. It is not uncommon the incidental diagnosis of foreign body and radiographic studies may be particularly helpful to elucidate the etiology. An early recognition minimizes the surgical risks and contributes to avoid severe complications. The best approach is to adopt preventive measures. Careful peroperative materials vigilance and instrumentation and also a meticulous check at the end of operations are essential to avoid such legal responsibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bordetella bronchiseptica causes acute and chronic respiratory infections in diverse animal species and occasionally in humans. In this study, we described the establishment of a simple, sensitive and cost-efficient loop-mediated isothermal amplification (LAMP) assay for the detection of B. bronchiseptica. A set of primers towards a 235 bp region within the flagellum gene of B. bronchiseptica was designed with online software.. The specificity of the LAMP assay was examined by using 6 porcine pathogens and 100 nasal swabs collected from healthy pigs and suspect infected pigs. The results indicated that positive reactions were confirmed for all B. bronchiseptica and no cross-reactivity was observed from other non-B. bronchiseptica. In sensitivity evaluations, the technique successfully detected a serial dilutions of extracted B. bronchiseptica DNA with a detection limit of 9 copies, which was 10 times more sensitive than that of PCR. Compared with conventional PCR, the higher sensitivity of LAMP method and no need for the complex instrumentation make this LAMP assay a promising alternative for the diagnosis of B. bronchiseptica in rural areas and developing countries where there lacks of complex laboratory services.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis mainly long quasi-periodic solar oscillations in various solar atmospheric structures are discussed, based on data obtained at several wavelengths, focussing, however, mainly on radio frequencies. Sunspot (Articles II and III) and quiet Sun area (QSA) (Article I) oscillations are investigated along with quasi-periodic pulsations (QPP) in a flaring event with wide-range radio spectra (Article IV). Various oscillation periods are detected; 3–15, 35–70 and 90 minutes (QSA), 10-60 and 80-130 minutes (in sunspots at various radio frequencies), 3-5, 10-23, 220-240, 340 and 470 minutes (in sunspots at photosphere) and 8-12 and 15-17 seconds (in a solar flare at radio frequencies). Some of the oscillation periods are detected for the first time, while some of them have been confirmed earlier by other research groups. Solar oscillations can provide more information on the nature of various solar structures. This thesis presents the physical mechanisms of some solar structure oscillations. Two different theoretical approaches are chosen; magnetohydrodynamics (MHD) and the shallow sunspot model. These two theories can explain a wide range of solar oscillations from a few seconds up to some hours. Various wave modes in loop structures cause solar oscillations (<45 minutes) both in sunspots and quiet Sun areas. Periods lasting more than 45 minutes in the sunspots (and a fraction of the shorter periods) are related to sunspot oscillations as a whole. Sometimes similar oscillation periods are detected both in sunspot area variations and respectively in magnetic field strength changes. This result supports a concept that these oscillations are related to sunspot oscillations as a whole. In addition, a theory behind QPPs at radio frequencies in solar flares is presented. The thesis also covers solar instrumentation and data sources. Additionally, the data processing methods are presented. As the majority of the investigations in this thesis focus on radio frequencies, also the most typical radio emission mechanisms are presented. The main structures of the Sun, which are related to solar oscillations, are also presented. Two separate projects are included in this thesis. Solar cyclicity is studied using the extensively large solar radio map archieve from Metsähovi Radio Observatory (MRO) at 37 GHz, between 1978 and 2011 (Article V) covering two full solar cycles. Also, some new solar instrumentation (Article VI) was developed during this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work is to describe the design and the implementation of an experiment to study the dynamics and the active control of a slewing multi-link flexible structure. The experimental apparatus was designed to be representative of a flexible space structure such as a satellite with multiple flexible appendages. In this study we describe the design procedures, the analog and digital instrumentation, the analytical modeling together with model validation studies carried out through experimental modal testing and parametric system identification studies in the frequency domain. Preliminary results of a simple positional control where the sensor and the actuator are positioned physically at the same point is also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of the slug flow characteristics is very important when designing pipelines and process equipment. When the intermittences typical in slug flow occurs, the fluctuations of the flow variables bring additional concern to the designer. Focusing on this subject the present work discloses the experimental data on slug flow characteristics occurring in a large-size, large-scale facility. The results were compared with data provided by mechanistic slug flow models in order to verify their reliability when modelling actual flow conditions. Experiments were done with natural gas and oil or water as the liquid phase. To compute the frequency and velocity of the slug cell and to calculate the length of the elongated bubble and liquid slug one used two pressure transducers measuring the pressure drop across the pipe diameter at different axial locations. A third pressure transducer measured the pressure drop between two axial location 200 m apart. The experimental data were compared with results of Camargo's1 algorithm (1991, 1993), which uses the basics of Dukler & Hubbard's (1975) slug flow model, and those calculated by the transient two-phase flow simulator OLGA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional diagnostics tests and technologies typically allow only a single analysis and result per test. The aim of this study was to propose robust and multiplex array-inwell test platforms based on oligonucleotide and protein arrays combining the advantages of simple instrumentation and upconverting phosphor (UCP) reporter technology. The UCPs are luminescent lanthanide-doped crystals that have a unique capability to convert infrared radiation into visible light. No autofluorescence is produced from the sample under infrared excitation enabling the development of highly sensitive assays. In this study, an oligonucleotide array-in-well hybridization assay was developed for the detection and genotyping of human adenoviruses. The study provided a verification of the advantages and potential of the UCP-based reporter technology in multiplex assays as well as anti-Stokes photoluminescence detection with a new anti- Stokes photoluminescence imager. The developed assay was technically improved and used to detect and genotype adenovirus types from clinical specimens. Based on the results of the epidemiological study, an outbreak of adenovirus type B03 was observed in the autumn of 2010. A quantitative array-in-well immunoassay was developed for three target analytes (prostate specific antigen, thyroid stimulating hormone, and luteinizing hormone). In this study, quantitative results were obtained for each analyte and the analytical sensitivities in buffer were in clinically relevant range. Another protein-based array-inwell assay was developed for multiplex serodiagnostics. The developed assay was able to detect parvovirus B19 IgG and adenovirus IgG antibodies simultaneously from serum samples according to reference assays. The study demonstrated that the UCPtechnology is a robust detection method for diverse multiplex imaging-based array-inwell assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt to delineate rather than to precisely define what we mean by "ecophysiology" is based on a brief historical overview of what eventually led to development of instrumentation and sampling strategies for analyses that allow description of physiological performance in the field. These techniques are surveyed. Ecophysiology originally is aut-ecology dedicated to the behaviour of individual plants, species or higher taxa, viz. "physiotypes", in particular habitats. Examples of ecophysiological diversity are developed, which illustrate gradual merging with more integrative considerations of functions and dynamics of habitats or ecosystems, i.e. a trend of research towards physiological syn-ecology. The latter is exemplified by studies with comparisons of a variety of morphotypes and physiotypes within a given habitat or ecosystem and across a range of habitats or ecosystems. The high demand and complexity as well as the excitement of ecology and ecophysiology arise from the quest to cover all conditions of the existence of organisms according to Ernst Haeckel's original definition of "ecology".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.