904 resultados para Enantioselective addition
Resumo:
Chloroperoxidase (CPO), secreted by marine fungus Caldariomyces fumago, is the most versatile catalyst among known heme enzymes. Chloroperoxidase can catalyze epoxidation reactions with high enantioselectivity and high yield, which makes CPO an attractive candidate for both industrial and medicinal chiral synthesis. Toward this end, we have constructed two CPO mutants, F103A and N74V. Chiral HPLC was used to evaluate the enantioselectivity and yield of CPO and the mutants toward the epoxidation of styrene and its derivatives. Both of the mutants show dramatically changed epoxidation profiles compared to the parent protein. This information provided fresh insight into the mechanism through which CPO achieves its enantioselectivity. Furthermore, effort was made to understand the biological function of CPO through characterization of CPO catalyzed oxidation of dimethylsulfoniopropionate (DMSP), a secondary metabolite of many marine algal species that plays a pivotal role in marine ecology and global climate.^
Resumo:
The purpose of this action research was to determine what instructional strategies could be used to improve student achievement in fraction addition. An eighth grade intensive math class practiced multiplication facts and hands-on applications of fractions concepts for 2 months. Pretests/posttests were used to measure improvement in computation and understanding.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
8 pages, 7 figures ACKNOWLEDGEMENT The authors wish to thank the Nesin foundation for an amazing working group activity in Nesin Math Village and wish to thank Tiago Pereira for fruitful discussions. PS and JK acknowledge gratefully the support of BMBF, CoNDyNet, FK. 03SF0472A. TP acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. DE acknowledge support by the Leibniz Association (WGL) under Grant No. SAW-2013-IZW-2.
Resumo:
Funding The NNUH Stroke and TIA Register is maintained by the NNUH NHS Foundation Trust Stroke Services and data management for this study is supported by the NNUH Research and Development Department through Research Capability Funds.
Resumo:
The research described in this thesis is concerned with the synthesis and stereoselective transformations of 4,5-dihydro-3(2H)-furanones and their 3-hydroxy derivatives. In Chapter 1, a review of synthetic routes to 3-hydroxytetrahydrofurans is presented. This incorporates the wide range of applications for these types of compounds. Preparative routes to and stereoselective transformations of the furanones investigated in this study are discussed in Chapter 2. The bulk of the work centers on stereoselective carbonyl group reductions to generate the 3-hydroxytetrahydrofuran derivatives in racemic form followed by kinetic resolution via lipase mediated esterification, resulting in enantioenriched 3-acetoxy and 3-hydroxytetrahydrofuran derivatives. In many cases, these processes proceed in a highly enantioselective manner. The influence of the lipase species and concentration of enzyme employed on the yield and stereochemical outcome of the reactions is examined in detail. Access to the complementary series of furanone and hydroxytetrahydrofuran derivatives by oxidation or reduction of the enantioenriched compounds was achieved through conventional synthetic methods. Chapter 2 also contains details of a novel synthetic route to a range of 2,3,5-trisubstituted furans from α-hydroxyenones and 4,5-dihydro-3(2H)-furanones. The mechanistic rationale for these transformations and the migratory aptitude of alkyl groups towards the formation of these furans is discussed in detail. Finally, Chapter 2 outlines the synthesis of a series of diarylcyclopentenones that were synthesised as part of our investigations. Chapter 3 contains a description of the synthetic procedures and biotransformations carried out together with key analytical and spectroscopic properties of the compounds studied and where appropriate, their analysis using chiral HPLC analysis.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1334/thumbnail.jpg
Resumo:
A catalytic enantioselective electrocyclic cascade leads to the construction of topologically complex systems comprising multiple rings with up to three stereocentres. This phase-transfer catalysed process offers a new strategy for the rapid and enantioselective generation of complex products bearing all-carbon quaternary stereogenic centres. © 2012 The Royal Society of Chemistry.
Resumo:
OBJECTIVE: To evaluate the cost-effectiveness of adding zoledronic acid or strontium-89 to standard docetaxel chemotherapy for patients with castrate-refractory prostate cancer (CRPC).
PATIENTS AND METHODS: Data on resource use and quality of life for 707 patients collected prospectively in the TRAPEZE 2 × 2 factorial randomised trial (ISRCTN 12808747) were used to assess the cost-effectiveness of i) zoledronic acid versus no zoledronic acid (ZA vs. no ZA), and ii) strontium-89 versus no strontium-89 (Sr89 vs. no Sr89). Costs were estimated from the perspective of the National Health Service in the UK and included expenditures for trial treatments, concomitant medications, and use of related hospital and primary care services. Quality-adjusted life-years (QALYs) were calculated according to patients' responses to the generic EuroQol EQ-5D-3L instrument, which evaluates health status. Results are expressed as incremental cost-effectiveness ratios (ICERs) and cost-effectiveness acceptability curves.
RESULTS: The per-patient cost for ZA was £12 667, £251 higher than the equivalent cost in the no ZA group. Patients in the ZA group had on average 0.03 QALYs more than their counterparts in no ZA group. The ICER for this comparison was £8 005. Sr89 was associated with a cost of £13 230, £1365 higher than no Sr89, and a gain of 0.08 QALYs compared to no Sr89. The ICER for Sr89 was £16 884. The probabilities of ZA and Sr89 being cost-effective were 0.64 and 0.60, respectively.
CONCLUSIONS: The addition of bone-targeting treatments to standard chemotherapy led to a small improvement in QALYs for a modest increase in cost (or cost-savings). ZA and Sr89 resulted in ICERs below conventional willingness-to-pay per QALY thresholds, suggesting that their addition to chemotherapy may represent a cost-effective use of resources.
Resumo:
Syftet med denna studie är att undersöka elevers förståelseav likhetstecknet och sambandet mellan addition och subtraktioni årskurs 3 samt deras klassläraresuppfattning av den egna matematikundervisningen, som behandlar addition, subtraktion och likhetstecknet.Studiens syfte besvaras genom följande frågeställningar: Vad kan specifikt utformade matematikuppgifter ge för information om elevers förståelse av likhetstecknet och sambandet mellan addition och subtraktioni årskurs 3?samtVad tänker en lärare om de resultat som framkommit av elevernas matematikuppgifter? Den empiriska undersökningen har genomförts med en kvantitativ metod, i form av en enkät där elever i årskurs 3 fått lösa speciellt utformade matematikuppgifter och en kvalitativ metod, i form av semi-struktureradintervju med elevernas lärare. Det resultat som framkommit i undersökningen har analyserats med hjälp av en innehållsanalys. Resultatet visar att alla elever intehar kunskapom att likhetstecknet indikerar ekvivalens mellan höger sida och vänster sida om likhetstecknet, men en majoritetav eleverna har den förståelsen. Det var inte väntat från lärarens sida att fyra eleverhelthade missförstått likhetstecknetsbetydelse. Läraren är medveten om att likhetstecknet kan vara svårt attförstå, men hade förväntat att alla elever skulle klara av att lösa minst matematikuppgifterna med delägsta talen.Resultatet visar även att nio av sexton elever har förstått sambandet mellan addition och subtraktion.Läraren menar att det sambandet återkommer under hela lågstadiet och därför hade förväntat sig att fler elever sett sambandet. Men samtidigt anser läraren att det är positivt att lite mer än halva gruppen har förstått sambandet mellan addition och subtraktion. Slutligen visar resultatet av studien att missförståelse av likhetstecknet har inverkan på elevers resultat vid uppgifter med öppna utsagor, men inte vid uppgifter där talen på vänster sida om likhetstecknet är likamed ett tal på höger sida om likhetstecknet.
Resumo:
Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.
Resumo:
Thesis (Master's)--University of Washington, 2016-08