987 resultados para Echo-Planar Imaging
Resumo:
© 2013 IEEE. This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.
Resumo:
We present a theoretical study on the electron tunneling through a single barrier created in a two-dimensional electron gas (2DEG) and quantum spin Hall (QSH) bar in a HgTe/CdTe quantum well with inverted band structures. For the 2DEG, the transmission shows the Fabry-Perot resonances for the interband tunneling process and is blocked when the incident energy lies in the bulk gap of the barrier region. For the QSH bar, the transmission gap is reduced to the edge gap caused by the finite size effect. Instead, transmission dips appear due to the interference between the edge states and the bound states originated from the bulk states. Such a Fano-like resonance leads to a sharp dip in the transmission which can be observed experimentally.
Resumo:
We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.
Resumo:
Large-area concave refractive microlens arrays, or concave template structures, and then the non-refractive-index-gradient type of planar refractive microlens arrays in InP and quartz substrates, are fabricated utilizing the method consisting of conventional UV photolithography, thermal shaping of concave photoresist microlenses, etching with an argon ion beam of large diameter, and filling or growing optical medium structures onto the curved surfaces of preshaped concave templates. Several key conditions for fabricating concave and also planar microlenses are discussed in detail. The concave structures obtained are characterized by scanning electron microscope and surface profile measurements. The far-field optical characteristics of quartz/ZrO2 planar refractive microlens arrays have been acquired experimentally. (c) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Field electron emission (FE) from an ultrathin multilayer planar cold cathode (UMPC) including a quantum well structure has been both experimentally and theoretically investigated. We found that by tuning the energy levels of UMPC, the FE characteristic can be evidently improved, which is unexplained by conventional FE mechanism. FE emission mechanism, dependent on the quantum structure effect, which supplies a favorable location of electron emission and enhances tunneling ability, has been presented to expound the notable amelioration. An approximate formula, brought forward, can predict the quantum FE enhancement, in which the theoretical prediction is close to the experimental result. (C) 2008 American Institute of Physics.
Resumo:
Planar graphite has been extensively studied by Raman scattering for years. A comparative Raman study of several different and less common non-planar graphitic materials is given here. New kinds of graphite whiskers and tubular graphite cones (synthetic and natural) have been introduced. Raman spectroscopy has been applied to the characterization of natural graphite crystal edge planes, an individual graphite whisker graphite polyhedral crystals and tubular graphite cones. Almost all of the observed Raman modes were assigned according to the selection rules and the double-resonance Raman mechanism. The polarization properties related to the structural features, the line shape of the first-order dispersive mode and its combination modes, the frequency variation of some modes in different carbon materials and other unique Raman spectral features are discussed here in detail.
Resumo:
Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We introduce the concept of the Loschmidt echo (LE) to the space of the reduced density matrix of spin and fermionic systems to study the density matrix LEs (DMLEs) of the one-dimensional extended Hubbard model and the transverse field Ising model. Our results show that the DMLEs are remarkably influenced by the criticality of the system, and the method is a convenient way to study quantum phase transitions.
Resumo:
We study the Loschmidt echo (LE) of a coupled system consisting of a central spin and its surrounding environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its derivative with respect to the magnetic parameter lambda in spin chain diverges along the critical line lambda=1, which suggests an alternative measurement of the quantum criticality of the spin chain.
Resumo:
Single-crystalline alpha-Si3N4 nanowires are controlled to grow perpendicular to the wet-etched trenches in the SiO0.94 film on the plane of the Si substrate without metal catalysis. A detailed characterization is carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photoluminescence at 600 nm from alpha-Si3N4 nanowires is attributed to the recombination at the defect state formed by the Si dangling bond N3 equivalent to Si-center dot. The growth mechanism is considered to be related to the catalysis and nitridation of SiO nanoclusters preferably re-deposited around the inner corner of the trenches, as well as faster Si diffusion along the slanting side walls of the trenches. This simple direction-controlled growth method is compatible with the CMOS process, and could facilitate the fabrication of alpha-Si3N4 nanoelectronic or nanophotonic devices on the Si platform.
Resumo:
The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically. The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound states in the dot. By use of structures with different angles between the inject and exit channels, the resonant peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot structures can also be used to study the bound states in the absence and presence of magnetic field.
Resumo:
By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure.