938 resultados para ELECTRICAL-CONDUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interpretation of the effect of plastic deformation on the calculated excess loss component (anomalous-loss) supports the concept of loss separation. Magnetic losses and Barkhausen noise of nonoriented electrical steel sheets were measured on Epstein strips taken from a single coil of 0.8% Si nonoriented electrical steel. Sheets were extracted in the annealed condition, without any skin pass and with a grain size of 18 mu m. This material was cold rolled in order to obtain sets of samples with true strain from 2% up to 29%. X-ray diffraction was used to estimate the dislocation density. The analysis of magnetic properties was performed by Barkhausen noise measurements and also by analyzing the hysteresis loops obtained from Epstein frame measurements for different inductions and different frequencies (including the quasi-static regime for hysteresis loss measurements). These data allowed us to observe that most of the well known total loss increase with plastic deformation is due to an increase in the hysteresis loss component, while excess loss decreases to become negligible. This behavior can be explained if it is assumed that the plastic deformation lead to an increase in the number of domain walls per unit volume, thereby decreasing the excess loss. Barkhausen peak area increases with plastic deformation, reproducing results taken from samples of different silicon content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform conduction slowing has been considered a characteristic of inherited demyelinating neuropathies. We present an 18-year-old girl, born from first cousins, that presented a late motor and psychological development, cerebellar ataxia, facial diplegia, abnormal eye movement, scoliosis, and corpus callosum agenesis, whose compound muscle action potentials were slowed and dispersed. A mutation was found on KCC3 gene, confirming Andermann syndrome, a disease that must be included in the differential diagnosis of inherited neuropathies with non-uniform conduction slowing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opto(electrical) properties and theoretical calculations of polyazomethine with vinylene and phenantridine moieties in the main chain were investigated in the present study. 2,5-Bis(hexyloxy)-1,4-bis[(2,5-bis(hexyloxy)-4-formyl-phenylenevinylene]benzene was polymerized in solution with 3,8-diamino-6-phenylphenanthridine (PAZ-PV-Ph). The temperatures of 5% weight loss (T-5%) of the polyazomethine was observed at 356 degrees C in nitrogen. Electrochemical properties of thin film of the polymer were studied by differential pulse voltammetry. The HOMO level of the PAZ-PV-Ph was at -4.97 eV. The energy band gap (E-g) was detected of approximately similar to 1.9 eV. Energy band gap (E-gopt) was additionally calculated from absorption spectrum and absorption coefficient alpha. The absorption UV-vis spectra of polyazomethine recorded in solution showed a blue shift in comparison with the solid state. HOMO-LUMO levels and E-g were additionally calculated theoretically by density functional theory and molecular simulations of PAZ-PV-Ph are presented. Current density-voltage (J-U) measurements were performed on ITO/PAZ-PV-Ph/Al, ITO/TiO2/PAZ-PV-Ph/Al and ITO/PEDOT/PAZ-PV-Ph:TiO2/Al devices in the dark and during irradiation with light (under illumination of 1000 W m(-2)). The polymer was tested using AFM technique and roughness (R-a, R-ms) along with skew and kurtosis are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the analog performance of n-type triple-gate MuGFETs with high-k dielectrics and TiN gate material fabricated in 45 degrees rotated SOI substrates comparing their performance with standard MuGFETs fabricated without substrate rotation. Different fin widths are studied for temperatures ranging from 250 K up to 400 K. The results of transconductance, output conductance, transconductance over drain current ratio, intrinsic voltage gain and unit-gain frequency are studied. It is observed that the substrate rotation improves the carrier mobility of narrow MuGFETs at any temperature because of the changing in the conduction plane at the sidewalls from (1 1 0) to (1 0 0). For lower temperatures, the improvement of the carrier mobility of rotated MuGFETs is more noticeable as well as the rate of mobility improvement with the temperature decrease is larger. The output conductance is weakly affected by the substrate rotation. Although this improvement in the transconductance of rotated MuGFETs is negligibly transferred to the intrinsic voltage gain, the unity-gain frequency of rotated device is improved due to the larger carrier mobility in the entire range of temperatures studied. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the proton irradiation influence on Multiple Gate MOSFETs (MuGFETs) performance is investigated. This analysis was performed through basic and analog parameters considering four different splits (unstrained, uniaxial, biaxial, uniaxial+biaxial). Although the influence of radiation is more pronounced for p-channel devices, in pMuGFETs devices, the radiation promotes a higher immunity to the back interface conduction resulting in the analog performance improvement. On the other hand, the proton irradiation results in a degradation of the post-irradiated n-channel transistors behavior. The unit gain frequency showed to be strongly dependent on stress efficiency and the radiation results in an increase of the unit gain frequency for splits with high stress effectiveness for both cases p- and nMuGFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Our objective was to develop an experimental model for the noninvasive and objective evaluation of facial nerve regeneration in rats using a motor nerve conduction test (electromyography). Methods: Twenty-two rats were submitted to neurophysiological evaluation using motor nerve conduction of the mandibular branch of the facial nerve to obtain the compound muscle action potentials (CMAPs). To record the CM APs, we used two needle electrodes that were inserted into the lower lip muscle of the rat. A supramaximal electrical stimulus was applied, and the values of CMAP latency, amplitude, length, area, and stimulus intensity obtained from each side were compared by use of the Wilcoxon test. Results: There was no significant difference (all p > 0.05) in latency, amplitude, duration, area, or intensity of stimuli between the two sides. The amplitudes ranged between 1.61 and 8.30 mV, the latencies between 1.03 and 1.97 ms, and the stimulus intensities between 1.50 and 2.90 mA. Conclusions: This is a noninvasive, easy, and highly reproducible method that contributes to an improvement of the techniques previously described and may contribute to future studies of the degeneration and regeneration of the facial nerve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new procedures for quickly obtaining accurate information on the physiological potential of seed lots is essential for developing quality control programs for the seed industry. In this study, the effectiveness of an automated system of seedling image analysis (Seed Vigor Imaging System - SVIS) in determining the physiological potential of sun hemp seeds and its relationship with electrical conductivity tests, were evaluated. SVIS evaluations were performed three and four days after sowing and data on the vigor index and the length and uniformity of seedling growth were collected. The electrical conductivity test was made on 50 seed replicates placed in containers with 75 mL of deionised water at 25 ºC and readings were taken after 1, 2, 4, 8 and 16 hours of imbibition. Electrical conductivity measurements at 4 or 8 hours and the use of the SVIS on 3-day old seedlings can effectively detect differences in vigor between different sun hemp seed lots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.