961 resultados para EHRLICH ASCITES TUMOR
Resumo:
Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.
Resumo:
Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.
Resumo:
BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.
Resumo:
We report a locally aggressive collagenous myofibroblastic neoplasm of the mandible in an 18-year-old male. Clinically, the lesion presented with rapid growth and irregular mandibular bone destruction. Grossly, the tumor was 10 cm in greatest dimension, light-tan, firm, and involving the posterior one-thirds of the body and inferior half of the left mandibular ramus. Histologically, the lesion was composed of a loose spindle cell proliferation interspersed with periodic dense bands of collagen. The spindle cells reacted positively to smooth muscle actin, calponin, and focally to desmin and were negative for S-100, pan-cytokeratin, CD99, CD34 and caldesmon, supporting myofibroblastic derivation. At our 4 year follow-up, the patient remained free of local recurrence and surgery related complications. The clinicopathologic findings and the differential diagnosis of this lesion is presented and discussed.
Resumo:
Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.
Resumo:
The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.
Resumo:
E2F1 is a multi-faceted protein that has roles in a number of important cellular processes including cell cycle regulation, apoptosis, proliferation, and the DNA damage response (DDR). Moreover, E2F1 has opposing roles in tumor development, acting as either a tumor suppressor or an oncogene depending on the context. In human cancer, E2F1 is often deregulated through aberrations in the Rb-p16INK4a-cyclin D1 pathway. In these studies we examined three mechanisms by which E2F1 might mediate its tumor suppressive properties: p21-induced senescence, miRNAs, and the DNA damage response. We found that E2F1 acts as a tumor suppressor in response to ras activation through a non-apoptotic mechanism requiring ARF and p53, but not p21. However, p21-loss inhibited two-stage chemical carcinogenesis in FVB mice. In response to E2F1 overexpression, we found that 22 miRNAs are differentially regulated in mouse epidermis, including let-7a, let-7c, and miR-301. Additionally, regulation of miR-301 involves binding of E2F1 to its promoter. Finally, our data indicate a role for E2F1 at sites of DNA damage requiring E2F1’s phosphorylation at serine 31 which may involve DNA repair. Further, this role in the DDR may affect tumor aggressiveness and multiplicity. In all, we have explored three mechanisms for E2F1-induced tumor suppression and identified E2F1’s role in the DNA damage response as a likely contributor to this phenomenon.
Resumo:
RMI1 (BLM-Associated Protein 75 or Blap75) is highly conserved from yeast to human. Previous studies have shown that hRMI1 is required for BLM/TopoIIIα/RMI1 complex stability and function. However, in vivo functions of RMI1 remain elusive. To address this question, I generated RMI1 knockout mice by homologous replacement targeting. While RMI1+/- mice showed no obvious phenotype, deletion of both RMI1 alleles leads to early embryonic lethality before implantation. I then generated RMI1/p53 double knockout mice. After ionizing radiation treatment at 4Gy, RMI1/p53 double-heterzygous mice showed shortened tumor latency and aggressive tumor types when comparing with wild type, RMI1+/- and p53+/- control cohorts. My study suggests a dual-functional role of RMI1 in early embryonic development and tumor suppression.
Resumo:
Squamous cell carcinoma of head and neck (SCCHN) is the tenth most common cancer in the world. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years. Therefore new targets for therapy are needed, and to this end we are studying signaling pathways activated by IL-6 which we have found stimulates cell migration and soft agar growth in SCCHN. Our data show that IL-6 increases TWIST expression in a transcription-independent mechanism in many SCCHN cell lines. Further investigation reveals TWIST can be phosphorylated upon IL-6 treatment. By computation prediction (http://scansite.mit.edu/motifscan_seq.phtml ), we found that TWIST has a putative phosphorylation site for casein kinase 2 (CK2) suggesting that this kinase could serve as a link between IL-6 stimulation and Twist stability. To test this hypothesis, we used a CK2 inhibitor and shRNA to CK2 and found that these interventions inhibited IL-6 stimulation of TWIST stability. In addition, mutation of the putative CK2 phosphorylation site (S18/S20A) in TWIST decreased the amount of phospho-ATP incorporated by TWIST in an in vitro kinase assay, and altered TWIST stability. In Boyd chamber migration assay and wound-healing assay, the CK2 inhibitor, DMAT, was found to decrease the motility of IL-6 stimulated SCCHN cells and over expression of either a wild-type or the hyperphosphorylated mimicking mutant S18/20D –Twist rather than the hypo-phosphorylated mimicking mutant S18/20A-Twist can promote SCCHN cell motility.To our knowledge, this is the first report to identify the importance of IL-6 stimulated CK2 phosphorylation of TWIST in SCCHN. As CK2 inhibitors are currently under phase I clinical trials, our findings indicate that CK2 may be a viable therapeutic target in SCCHN. Therefore, further pre-clinical studies of this inhibitor are underway.
Resumo:
The tumor microenvironment is comprised of a vast array of heterogeneous cells including both normal and neoplastic cells. The tumor stroma recruitment process has been exploited for an effective gene delivery technique using bone marrow derived MSC. Targeted migration of the MSC toward the tumor microenvironment, while successful, is not yet fully understood. This study was designed to assess the role of CD44 in the migration of MSC toward the tumor microenvironment and to determine the implications of CD44-deficient MSC within the tumor stroma. Inhibition of MSC migration was evaluated through a variety of methods in vitro and in vivo including CD44 receptor knockdown, CD44 antagonists, CD44 neutralizing antibodies and small molecule inhibitor of matrix metalloproteinases. Blocking CD44 signaling through MMP inhibition was characterized by lack of intracellular domain cleavage and lead to the decrease in Twist gene expression. A functional relationship between CD44 and Twist expression was confirmed by chromatin immunoprecipitation. Next, a series of murine tumor models were used to examine the role of CD44 deficient stroma within the tumor microenvironment. Labeled transgenic CD44 knockout (KO) MSC or wild type (WT) C57/B6 MSC were used to analyze the stromal incorporation within murine breast carcinomas (EO771 and 4T1). Subsequent tumors were analyzed for vessel formation (CD31), and the presence of tumor associated fibroblast (TAF) markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and fibroblast specific protein (FSP). The tumors with CD44KO MSC cells had less vessel formation than the tumors with WT MSC. The lack of fibroblastic TAF population as defined by FAP/FSP expression by the CD44KO MSC admixed tumors suggest that the bone marrow derived population of MSC were unable to contribute to the fibroblastic stromal population. Subsequently, a bone marrow transplantation experiment confirmed the endogenous migratory deficiencies of the CD44KO bone marrow derived stromal cells toward the tumor microenvironment in vivo. WT mice with CD44KO bone marrow had less CD44KOderived tumor stroma compared to mice with WT bone marrow. These results indicate that CD44 is crucial to stromal cell migration and incorporation to the tumor microenvironment as TAF.
Resumo:
Effects of Combined Bevacizumab and Paclitaxel on Tumor Interstitial Fluid Pressure in a Preclinical Breast Cancer Model by Ricardo H. Alvarez Several mechanisms of cell resistance are often accountable for unsuccessful chemotherapy against cancer. Another reason, which has received increased attention, is the inefficient transport of anticancer drugs into tumor tissue. These impaired transports of chemotherapy into the tumor have been attributed to abnormal microvasculature and to pathologically increased tumor hypertension also called: interstitial fluid pressure (IFP). The pathophysiological processes leading to elevated tumor IFP are poorly understood. Here, in a preclinical breast cancer model, it is argued that a condition of raised IFP is a major factor in preventing optimal access of systemically administered chemotherapy agents. In our experimental model, we used a GILM2 human breast cancer in xenografts; mice were treated with different doses of paclitaxel –a widely used antimicrotubular agent, and bevacizumab –monoclonal antibody against vascular endothelial growth factor (VEGF). The proposed research project is designed to test the hypothesis that paclitaxel in combination with bevacizumab decreases the tumor IPF by restoring tumor permeability and increasing chemotherapy delivery. We demonstrated that the combination of paclitaxel and bevacizumab produced greater tumor control than either agent given alone and this combination reduced the IFP, producing an increment of 75% of apoptosis compared with the control arm. In addition, the intra-tumor paclitaxel quantification by liquid chromatography/Mass Spectrometry (LC/MS) demonstrated that lower dose of both agents showed a synergistic effect compared with high dose of treatment, where there is no significantly increase of paclitaxel into the tumor. These preclinical results are likely to have broad implications for the utility of anti-angiogenic therapies alone and in combination with chemotherapeutic agents.
Resumo:
Tumors comprising the spectrum of hemangiopericytoma/ malignant solitary fibrous tumor (HPC/SFT) are thought to arise from fibroblasts and represent a small subset of soft tissue sarcomas. Surgery is typically the treatment of choice for localized disease, with reported 10-year overall survival rates of 54-89% after complete surgical resection. However, for the approximately 20% of HPC/SFT patients who eventually develop local recurrences and/or distant metastases, options for effective treatment are limited and are poorly defined. Alternative therapeutic options are therefore needed for improved palliation and disease control. We hypothesize that HPC/SFT are a spectrum of soft tissue tumors with unique clinical, pathological, and molecular makeup and clinical behavior. HPC/SFT respond to unique therapeutic agents that specifically target aberrations specific to these tumors. We retrospectively reviewed the characteristics and the clinical outcomes for all HPC/SFT patients whose tumor specimens have been reviewed at the MD Anderson Cancer Center from January 1993 to June 2007 by a MD Anderson pathologist and were treated at the institution with available electronic medical records. We identified 128 patients, 79 with primary localized disease and 49 with recurrent and/or metastatic disease. For the 23 patients with advanced HPC/SFT who received adriamycin-based, gemcitabine based, or paclitaxel chemotherapy as first- or second-line therapy, the overall RECIST response rate was 0%. Most patients achieved a brief duration of disease stabilization on chemotherapy, with median progression-free survival (PFS) period of 4.6 months. For the 14 patients with advanced HPC/SFT who received temozolomide and bevacizumab systemic therapy, the overall RECIST response rate was 14%, with the overall Choi response rate of 79%. The median PFS for the cohort was 9.7 months with a median 6-month progression free rate of 78.6%. The most frequently observed toxic effect of temzolomide-bevacizumab therapy was myelosuppression. We have designed a phase II study to evaluate the safety and efficacy of temozolomide-bevaciumab in locally advanced, recurrent, and metastatic HPC/SFT in a prospective manner. Combination therapy with temozolomide and bevacizumab may be a potentially clinically beneficial regimen for advanced HPC/SFT patients.
Resumo:
BACKGROUND: Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-gamma (rIFN-gamma), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). METHODS: We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-gamma on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. RESULTS: Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-gamma reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-gamma-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-gamma. Suppression of arginase activity by rIFN-gamma in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-gamma EOC cells. CONCLUSIONS: Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-gamma inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-gamma. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-gamma or rIFN-gamma-inducers, it would be helpful to examine these effects in vivo.
Resumo:
Introduction: Desmoplastic small round cell tumor (DSRCT) is an uncommon, embryonic-type neoplasm, typically presenting as an abdominal mass in young men. A single case of DSRCT arising in the peripheral nervous system has been reported. Methods: The clinical course, imaging, electrophysiological, intraoperative, histopathological, molecular findings, and postoperative follow-up are reported. Results: A 43-year-old man presented with slowly progressive right brachial plexopathy. Magnetic resonance imaging revealed an enlarged medial cord with heterogeneous contrast enhancement. Histology showed a "small round cell" neoplasm with a polyphenotypic immunoprofile, including epithelial and mesenchymal markers. A pathognomonic fusion of Ewing sarcoma breakpoint region 1 and Wilms tumor 1 genes (EWSR1/WT1) was present. Treatment involved gross total excision and local radiotherapy. Conclusion: Our findings confirm the occurrence of DSRCT as a primary peripheral nerve tumor. Despite its usually very aggressive clinical course, prolonged recurrence-free survival may be reached. Histomorphology and immunoprofile of DSRCT may lead to misdiagnosis as small cell carcinoma. © 2013 Wiley Periodicals, Inc.
Resumo:
BACKGROUND A number of epidemiological studies indicate an inverse association between atopy and brain tumors in adults, particularly gliomas. We investigated the association between atopic disorders and intracranial brain tumors in children and adolescents, using international collaborative CEFALO data. PATIENTS AND METHODS CEFALO is a population-based case-control study conducted in Denmark, Norway, Sweden, and Switzerland, including all children and adolescents in the age range 7-19 years diagnosed with a primary brain tumor between 2004 and 2008. Two controls per case were randomly selected from population registers matched on age, sex, and geographic region. Information about atopic conditions and potential confounders was collected through personal interviews. RESULTS In total, 352 cases (83%) and 646 controls (71%) participated in the study. For all brain tumors combined, there was no association between ever having had an atopic disorder and brain tumor risk [odds ratio 1.03; 95% confidence interval (CI) 0.70-1.34]. The OR was 0.76 (95% CI 0.53-1.11) for a current atopic condition (in the year before diagnosis) and 1.22 (95% CI 0.86-1.74) for an atopic condition in the past. Similar results were observed for glioma. CONCLUSIONS There was no association between atopic conditions and risk of all brain tumors combined or of glioma in particular. Stratification on current or past atopic conditions suggested the possibility of reverse causality, but may also the result of random variation because of small numbers in subgroups. In addition, an ongoing tumor treatment may affect the manifestation of atopic conditions, which could possibly affect recall when reporting about a history of atopic diseases. Only a few studies on atopic conditions and pediatric brain tumors are currently available, and the evidence is conflicting.