977 resultados para Dirac-Hestenes equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive impairments are currently regarded as important determinants of functional domains and are promising treatment goals in schizophrenia. Nevertheless, the exact nature of the interdependent relationship between neurocognition and social cognition as well as the relative contribution of each of these factors to adequate functioning remains unclear. The purpose of this article is to systematically review the findings and methodology of studies that have investigated social cognition as a mediator variable between neurocognitive performance and functional outcome in schizophrenia. Moreover, we carried out a study to evaluate this mediation hypothesis by the means of structural equation modeling in a large sample of 148 schizophrenia patients. The review comprised 15 studies. All but one study provided evidence for the mediating role of social cognition both in cross-sectional and in longitudinal designs. Other variables like motivation and social competence additionally mediated the relationship between social cognition and functional outcome. The mean effect size of the indirect effect was 0.20. However, social cognitive domains were differentially effective mediators. On average, 25% of the variance in functional outcome could be explained in the mediation model. The results of our own statistical analysis are in line with these conclusions: Social cognition mediated a significant indirect relationship between neurocognition and functional outcome. These results suggest that research should focus on differential mediation pathways. Future studies should also consider the interaction with other prognostic factors, additional mediators, and moderators in order to increase the predictive power and to target those factors relevant for optimizing therapy effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigators interested in whether a disease aggregates in families often collect case-control family data, which consist of disease status and covariate information for families selected via case or control probands. Here, we focus on the use of case-control family data to investigate the relative contributions to the disease of additive genetic effects (A), shared family environment (C), and unique environment (E). To this end, we describe a ACE model for binary family data and then introduce an approach to fitting the model to case-control family data. The structural equation model, which has been described previously, combines a general-family extension of the classic ACE twin model with a (possibly covariate-specific) liability-threshold model for binary outcomes. Our likelihood-based approach to fitting involves conditioning on the proband’s disease status, as well as setting prevalence equal to a pre-specified value that can be estimated from the data themselves if necessary. Simulation experiments suggest that our approach to fitting yields approximately unbiased estimates of the A, C, and E variance components, provided that certain commonly-made assumptions hold. These assumptions include: the usual assumptions for the classic ACE and liability-threshold models; assumptions about shared family environment for relative pairs; and assumptions about the case-control family sampling, including single ascertainment. When our approach is used to fit the ACE model to Austrian case-control family data on depression, the resulting estimate of heritability is very similar to those from previous analyses of twin data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.