970 resultados para Design and Construction
Resumo:
The School of Mechanical and Aerospace Engineering at Queen’s University Belfast started BEng and MEng degree programmes in Product Design and Development (PDD) in 2004. Intended from the outset to be significantly different from the existing programmes within the School the PDD degrees used the syllabus and standards defined by the CDIO Initiative as the basis for an integrated curriculum. Students are taught in the context of conceiving, designing, implementing and operating a product. Fundamental to this approach is a core sequence of Design-Build-Test (DBT) experiences which facilitates the development of a range of professional skills as well as the immediate application of technical knowledge gained in strategically aligned supporting modules.
The key objective of the degree programmes is to better prepare students for professional practice. PDD graduates were surveyed using a questionnaire developed by the CDIO founders and interviewed to examine the efficacy of these degree programmes, particularly in this key objective. Graduate employment rates, self assessment of graduate attributes and examples of work produced by MEng graduates provided positive evidence that their capabilities met the requirements of the profession. The 24% questionnaire response rate from the 96 graduates to date did not however facilitate statistically significant conclusions to be drawn and particularly not for BEng graduates who were under represented in the response group. While not providing proof of efficacy the investigation did provide a good amount of useful data for consideration as part of a continuous improvement process.
Resumo:
There is a requirement for better integration between design and analysis tools, which is difficult due to their different objectives, separate data representations and workflows. Currently, substantial effort is required to produce a suitable analysis model from design geometry. Robust links are required between these different representations to enable analysis attributes to be transferred between different design and analysis packages for models at various levels of fidelity.
This paper describes a novel approach for integrating design and analysis models by identifying and managing the relationships between the different representations. Three key technologies, Cellular Modeling, Virtual Topology and Equivalencing, have been employed to achieve effective simulation model management. These technologies and their implementation are discussed in detail. Prototype automated tools are introduced demonstrating how multiple simulation models can be linked and maintained to facilitate seamless integration throughout the design cycle.
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
The effect of preparation design and the physical properties of the interface lute on the restored machined ceramic crown-tooth complex are poorly understood. The aim of this work was to determine, by means of three-dimensional finite element analysis (3D FEA) the effect of the tooth preparation design and the elastic modulus of the cement on the stress state of the cemented machined ceramic crown-tooth complex. The three-dimensional structure of human premolar teeth, restored with adhesively cemented machined ceramic crowns, was digitized with a micro-CT scanner. An accurate, high resolution, digital replica model of a restored tooth was created. Two preparation designs, with different occlusal morphologies, were modeled with cements of 3 different elastic moduli. Interactive medical image processing software (mimics and professional CAD modeling software) was used to create sophisticated digital models that included the supporting structures; periodontal ligament and alveolar bone. The generated models were imported into an FEA software program (hypermesh version 10.0, Altair Engineering Inc.) with all degrees of freedom constrained at the outer surface of the supporting cortical bone of the crown-tooth complex. Five different elastic moduli values were given to the adhesive cement interface 1.8 GPa, 4 GPa, 8 GPa, 18.3 GPa and 40 GPa; the four lower values are representative of currently used cementing lutes and 40 GPa is set as an extreme high value. The stress distribution under simulated applied loads was determined. The preparation design demonstrated an effect on the stress state of the restored tooth system. The cement elastic modulus affected the stress state in the cement and dentin structures but not in the crown, the pulp, the periodontal ligament or the cancellous and cortical bone. The results of this study suggest that both the choice of the preparation design and the cement elastic modulus can affect the stress state within the restored crown-tooth complex.
Resumo:
This paper exploits an amplify-and-forward (AF) two-way relaying network (TWRN), where an energy constrained relay node harvests energy with wireless power transfer. Two bidirectional protocols, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, are considered. Three wireless power transfer policies, namely, 1) dual-source (DS) power transfer; 2) single-fixed-source (SFS) power transfer; and 3) single-best-source (SBS) power transfer are proposed and well-designed based on time switching receiver architecture. We derive analytical expressions to determine the throughput both for delay-limited transmission and delay-tolerant transmission. Numerical results corroborate our analysis and show that MABC protocol achieves a higher throughput than TDBC protocol. An important observation is that SBS policy offers a good tradeoff between throughput and power.
Resumo:
Following the UK Medical Research Council’s (MRC) guidelines for the development and evaluation of complex interventions, this study aimed to design, develop and optimise an educational intervention about young men and unintended teenage pregnancy based around an interactive film. The process involved identification of the relevant evidence base, development of a theoretical understanding of the phenomenon of unintended teenage pregnancy in relation to young men, and exploratory mixed methods research. The result was an evidence-based, theory-informed, user-endorsed intervention designed to meet the much neglected pregnancy education needs of teenage men and intended to increase both boys’ and girls’ intentions to avoid an unplanned pregnancy during adolescence. In prioritising the development phase, this paper addresses a gap in the literature on the processes of research-informed intervention design. It illustrates the application of the MRC guidelines in practice while offering a critique and additional guidance to programme developers on the MRC prescribed processes of developing interventions. Key lessons learned were: 1) know and engage the target population and engage gatekeepers in addressing contextual complexities; 2) know the targeted behaviours and model a process of change; and 3) look beyond development to evaluation and implementation.