983 resultados para Decision variables


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When you are faced with a difficult decision, it’s not unusual to feel confused, frustrated, and perhaps a little frightened because you are not sure what to expect or where to turn for answers. The purpose of this handbook is to assist you in making an informed choice about your pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Business Newsletter for Agriculture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Decision curve analysis has been introduced as a method to evaluate prediction models in terms of their clinical consequences if used for a binary classification of subjects into a group who should and into a group who should not be treated. The key concept for this type of evaluation is the "net benefit", a concept borrowed from utility theory. METHODS: We recall the foundations of decision curve analysis and discuss some new aspects. First, we stress the formal distinction between the net benefit for the treated and for the untreated and define the concept of the "overall net benefit". Next, we revisit the important distinction between the concept of accuracy, as typically assessed using the Youden index and a receiver operating characteristic (ROC) analysis, and the concept of utility of a prediction model, as assessed using decision curve analysis. Finally, we provide an explicit implementation of decision curve analysis to be applied in the context of case-control studies. RESULTS: We show that the overall net benefit, which combines the net benefit for the treated and the untreated, is a natural alternative to the benefit achieved by a model, being invariant with respect to the coding of the outcome, and conveying a more comprehensive picture of the situation. Further, within the framework of decision curve analysis, we illustrate the important difference between the accuracy and the utility of a model, demonstrating how poor an accurate model may be in terms of its net benefit. Eventually, we expose that the application of decision curve analysis to case-control studies, where an accurate estimate of the true prevalence of a disease cannot be obtained from the data, is achieved with a few modifications to the original calculation procedure. CONCLUSIONS: We present several interrelated extensions to decision curve analysis that will both facilitate its interpretation and broaden its potential area of application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Shared decision-making is not widely implemented in healthcare. We aimed to set a research agenda about promoting shared decision-making through continuing professional development. METHODS: Thirty-six participants met for two days. RESULTS: Participants suggested ways to improve an environmental scan that had inventoried 53 shared decision-making training programs from 14 countries. Their proposed research agenda included reaching an international consensus on shared decision-making competencies and creating a framework for accrediting continuing professional development initiatives in shared decision-making. CONCLUSIONS: Variability in shared decision-making training programs showcases the need for quality assurance frameworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract¿La deteción del espectro libre para las comunicaciones inalámbricas en un momento puntual es una tarea compleja cuyo desarrollo se simplica al realizarse de forma distribuida por una red de radio cognitiva. Sin embargo existes dificultades y vulnerabilidades de seguridad que han de ser tenidas en cuenta y solventadas a la hora de autenticar y validar los nodos de la red. Este artículo presenta una propuesta de mejora del protocolo fully distributed decision making protocol for CRN con el fin de llevar a cabo esta tarea de detección del espectro de una manera eficiente y segura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este trabajo fue desarrollar una ecuación de regresión que permitiese estimar el rendimiento (Y) del plátano Hartón (Musa AAB subgrupo plátano cv. Hartón), con la relación entre el Índice de Balance de Nutrientes DRIS (IBN-DRIS) (X1) y el número de hojas de la planta madre (X2). Usando un muestreo completamente al azar, se colectaron 398 muestras de tejido foliar. Se obtuvo la ecuación: Y = 30,351** - 8,644** log X1 + 0,27502*X2, con R² de 0,6206***, con distribución normal de los residuos. Pudo demostrarse que con la misma se puede predecir el rendimiento potencial de cualquier plantación del plátano Hartón en el área de estudio.