936 resultados para Darby Canine Kidney
Resumo:
BACKGROUND Within the context of an increased epidemiological pressure caused by canine distemper virus (CDV) in Switzerland together with a potential re-emergence of endemic pathogens such as orthopoxviruses (OPXV), dual infections are possible among susceptible species. OBJECTIVE To describe a case of concurrent CDV and OPXV infection in a cat. ANIMAL A 5-year-old, neutered male cat was presented with erythema, crusts and ulcerations around the left eye. High-grade pruritus and a severe conjunctivitis were also present. METHODS Formalin-fixed skin biopsy samples were obtained from lesional skin. Histopathology, CDV immunohistochemistry and CDV and OPXV RT-PCR were performed. RESULTS Histopathological examination showed severe epidermal necrosis extending to the follicular walls and a dermal infiltration, predominantly eosinophilic. Intranuclear and intracytoplasmic eosinophilic inclusion bodies were visible in the wall of affected hair follicles, with occasional formation of syncytia. The RT-PCR revealed the contextual presence of both CDV and OPXV. Scattered cells stained positive for CDV by immunohistochemistry. CONCLUSION AND DISCUSSION Dual infections with CDV and OPXV, although rare, may occur and represent additional differential diagnoses for ulcerative skin lesions in cats.
Resumo:
Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.
Resumo:
OBJECTIVES: The aim of this study was to determine whether the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)- or Cockcroft-Gault (CG)-based estimated glomerular filtration rates (eGFRs) performs better in the cohort setting for predicting moderate/advanced chronic kidney disease (CKD) or end-stage renal disease (ESRD). METHODS: A total of 9521 persons in the EuroSIDA study contributed 133 873 eGFRs. Poisson regression was used to model the incidence of moderate and advanced CKD (confirmed eGFR < 60 and < 30 mL/min/1.73 m(2) , respectively) or ESRD (fatal/nonfatal) using CG and CKD-EPI eGFRs. RESULTS: Of 133 873 eGFR values, the ratio of CG to CKD-EPI was ≥ 1.1 in 22 092 (16.5%) and the difference between them (CG minus CKD-EPI) was ≥ 10 mL/min/1.73 m(2) in 20 867 (15.6%). Differences between CKD-EPI and CG were much greater when CG was not standardized for body surface area (BSA). A total of 403 persons developed moderate CKD using CG [incidence 8.9/1000 person-years of follow-up (PYFU); 95% confidence interval (CI) 8.0-9.8] and 364 using CKD-EPI (incidence 7.3/1000 PYFU; 95% CI 6.5-8.0). CG-derived eGFRs were equal to CKD-EPI-derived eGFRs at predicting ESRD (n = 36) and death (n = 565), as measured by the Akaike information criterion. CG-based moderate and advanced CKDs were associated with ESRD [adjusted incidence rate ratio (aIRR) 7.17; 95% CI 2.65-19.36 and aIRR 23.46; 95% CI 8.54-64.48, respectively], as were CKD-EPI-based moderate and advanced CKDs (aIRR 12.41; 95% CI 4.74-32.51 and aIRR 12.44; 95% CI 4.83-32.03, respectively). CONCLUSIONS: Differences between eGFRs using CG adjusted for BSA or CKD-EPI were modest. In the absence of a gold standard, the two formulae predicted clinical outcomes with equal precision and can be used to estimate GFR in HIV-positive persons.
Resumo:
Brushite is a well known precursor of calcium oxalate monohydrate, the main mineral found in kidney stones having a monoclinic crystal structure. Here, we present a new method for biomimicking brushite using a single tube diffusion technique for gel growth. Brushite crystals were grown by precipitation of calcium hydrogen phosphate hydrate in a gelatin/glutamic acid network. They are compared with those produced in gel in the presence of urea. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed a change of morphology by glutamic acid from spherulitic growth to plate-shaped and mushroom-like forms consisting of crystal plates and highly ordered prismatic needles, respectively. Furthermore, brushite crystals grown in a gelatin/glutamic acid/urea network showed needle-shaped morphology being different from other brushite growth forms. The XRD method showed that cell parameters for brushite specimens were slightly larger than those of the American Mineral Society reference structure. The mushroom-like biomimetic composite bears a strong resemblance to the brushite kidney stones which may open up new future treatment options for crystal deposition diseases. Hence, suitable diets from glutamic acid rich foods could be recommended to inhibit and control brushite kidney stones.
Resumo:
Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.
Resumo:
BACKGROUND: While previous studies suggest advantages of minimally invasive surgery in living donor nephrectomy, similar data are lacking for kidney transplant recipients. Our aim was to prospectively evaluate short- and long-term outcome for kidney transplant recipients, comparing a short transverse (ST) to a classical hockey-stick (HS) incision. METHODS: Sixty-six patients were randomized into two groups: ST vs. HS from January 2008 to May 2010. ST was defined as incision length ≤9 cm and HS as >14 cm. Perioperative data were collected, with evaluation of intra- and postoperative complications and quality of recovery (QoR) score. RESULTS: There were no significant differences in patient demographics, early or long-term postoperative pain. There were no significant differences in QoR scores between the ST and HS group. Predictive for a worse QoR was persisting incisional pain at the 30-month follow-up. Thirty-days mortality, morbidity, and long-term kidney function did not differ between the two groups (p = 1.00, p = 0.62 and p = 0.66, respectively). CONCLUSIONS: Patient satisfaction as well as graft function and patient mortality was not influenced by incision length. With patient and graft safety being paramount, especially in times of organ shortage, incision length should reflect the requirement for a successful transplantation and not be a measure of feasibility.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3–9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin’s effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.
Resumo:
The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.
Resumo:
Fifty Clostridium perfringens strains were isolated from individual dogs with acute diarrhoea that were not given antibiotics. Toxin types and minimal inhibitory concentrations of 15 antibiotics were determined for each of them. All strains harboured the alpha-toxin gene, 12 of them had both the alpha- and entero-toxin gene and 5 had both the alpha- and beta2-toxin gene. Eighteen percent of the isolates showed resistance to tetracycline and 54 % showed decreased susceptibility to metronidazole which is one of the most frequently used antibiotics in the treatment of canine diarrhoea. Apart from that, all isolates were susceptible to the remaining antibiotics tested. These findings lead to the conclusion that despite a general susceptibility to antibiotics in C. perfringens, resistance is developing in isolates from dogs. Therefore, careful identification of the pathogenic agent and antibiotic susceptibility testing should be performed prior to therapy in order to minimise further selection of antibiotic resistance.
Resumo:
OBJECTIVE To validate use of stress MRI for evaluation of stifle joints of dogs with an intact or deficient cranial cruciate ligament (CrCL). SAMPLE 10 cadaveric stifle joints from 10 dogs. PROCEDURES A custom-made limb-holding device and a pulley system linked to a paw plate were used to apply axial compression across the stifle joint and induce cranial tibial translation with the joint in various degrees of flexion. By use of sagittal proton density-weighted MRI, CrCL-intact and deficient stifle joints were evaluated under conditions of loading stress simulating the tibial compression test or the cranial drawer test. Medial and lateral femorotibial subluxation following CrCL transection measured under a simulated tibial compression test and a cranial drawer test were compared. RESULTS By use of tibial compression test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 9.6 ± 3.7 mm and 10 ± 4.1 mm, respectively. By use of cranial drawer test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 8.3 ± 3.3 mm and 9.5 ± 3.5 mm, respectively. No significant difference in femorotibial subluxation was found between stress MRI techniques. Femorotibial subluxation elicited by use of the cranial drawer test was greater in the lateral than in the medial compartment. CONCLUSIONS AND CLINICAL RELEVANCE Both stress techniques induced stifle joint subluxation following CrCL transection that was measurable by use of MRI, suggesting that both methods may be further evaluated for clinical use.
Resumo:
In the general population, HDL cholesterol (HDL-C) is associated with reduced cardiovascular events. However, recent experimental data suggest that the vascular effects of HDL can be heterogeneous. We examined the association of HDL-C with all-cause and cardiovascular mortality in the Ludwigshafen Risk and Cardiovascular Health study comprising 3307 patients undergoing coronary angiography. Patients were followed for a median of 9.9 years. Estimated GFR (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration eGFR creatinine-cystatin C (eGFRcreat-cys) equation. The effect of increasing HDL-C serum levels was assessed using Cox proportional hazard models. In participants with normal kidney function (eGFR>90 ml/min per 1.73 m(2)), higher HDL-C was associated with reduced risk of all-cause and cardiovascular mortality and coronary artery disease severity (hazard ratio [HR], 0.51, 95% confidence interval [95% CI], 0.26-0.92 [P=0.03]; HR, 0.30, 95% CI, 0.13-0.73 [P=0.01]). Conversely, in patients with mild (eGFR=60-89 ml/min per 1.73 m(2)) and more advanced reduced kidney function (eGFR<60 ml/min per 1.73 m(2)), higher HDL-C did not associate with lower risk for mortality (eGFR=60-89 ml/min per 1.73 m(2): HR, 0.68, 95% CI, 0.45-1.04 [P=0.07]; HR, 0.84, 95% CI, 0.50-1.40 [P=0.50]; eGFR<60 ml/min per 1.73 m(2): HR, 1.18, 95% CI, 0.60-1.81 [P=0.88]; HR, 0.82, 95% CI, 0.40-1.69 [P=0.60]). Moreover, Cox regression analyses revealed interaction between HDL-C and eGFR in predicting all-cause and cardiovascular mortality (P=0.04 and P=0.02, respectively). We confirmed a lack of association between higher HDL-C and lower mortality in an independent cohort of patients with definite CKD (P=0.63). In summary, higher HDL-C levels did not associate with reduced mortality risk and coronary artery disease severity in patients with reduced kidney function. Indeed, abnormal HDL function might confound the outcome of HDL-targeted therapies in these patients.