927 resultados para DAMAGE
Resumo:
Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.
Resumo:
The recognition of an increasing and worldwide demand for high quality in fruits and vegetables has grown in recent years. Evidence of severe problems of mechanical damage is increasing, and this is affecting the trade of fruits in European and other countries. The potential market for fresh high-quality vegetables and fruits remains restricted by the lack of quality of the majority of products that reach consumers; this is the case for local as well as import/export markets, so a reduction in the consumption of fresh fruits in favour of other fixed-quality products (dairy in particular) may become widespread. In a recent survey (King, 1988, cited in Bellon, 1989), it appears that, for the moment, one third of the surveyed consumers are still continuing to increase their fresh produce consumption. The factors that appear as being most important in influencing the shopping behaviour of these consumers are taste/flavour, freshness/ripeness, appealing look, and cleanliness. Research on mechanical damage in fruit and vegetables has been underway for several years. The first research made on physical properties of fruits was in fact directed towards analysing the response to slow or rapid loading of selected fruits (Fridley et al, 1968; Horsefield et al., 1972). From that time on, research has expanded greatly, and different aspects of the problem have been approached. These include applicable mechanical models for the contact problem, the response of biological tissues to loading, devices for detecting damage causes in machines and equipment, and procedures for sensing bruises in grading and sorting. This chapter will be devoted to the study of actual research results relative to the cause and mechanisms of mechanical damage in fruits (secondarily in vegetables), the development of bruises in these commodities, the models that have been used up to now, and the different factors which have been recognized as influencing the appearance and development of mechanical damage in fruits. The study will be focused mainly on contact-damage - that is, slow or rapid loads applied to the surface of the products and causing bruises. (A bruise is defined as an altered volume of fruit tissues below the skin that is discoloured and softened.) Other types of mechanical damage, like abrasion and scuffing, punctures and cuts, will be also mentioned briefly.
Resumo:
Damage models based on the Continuum Damage Mechanics (CDM) include explicitly the coupling between damage and mechanical behavior and, therefore, are consistent with the definition of damage as a phenomenon with mechanical consequences. However, this kind of models is characterized by their complexity. Using the concept of lumped models, possible simplifications of the coupled models have been proposed in the literature to adapt them to the study of beams and frames. On the other hand, in most of these coupled models damage is associated only with the damage energy release rate which is shown to be the elastic strain energy. According to this, damage is a function of the maximum amplitude of cyclic deformation but does not depend on the number of cycles. Therefore, low cycle effects are not taking into account. From the simplified model proposed by Flórez-López, it is the purpose of this paper to present a formulation that allows to take into account the degradation produced not only by the peak values but also by the cumulative effects such as the low cycle fatigue. For it, the classical damage dissipative potential based on the concept of damage energy release rate is modified using a fatigue function in order to include cumulative effects. The fatigue function is determined through parameters such as the cumulative rotation and the total rotation and the number of cycles to failure. Those parameters can be measured or identified physically through the haracteristics of the RC. So the main advantage of the proposed model is the possibility of simulating the low cycle fatigue behavior without introducing parameters with no suitable physical meaning. The good performance of the proposed model is shown through a comparison between numerical and test results under cycling loading.
Resumo:
Outline: • Motivation, aim • Complement waveguide data on silica • Optical data in quartz • Detailed analysis, i.e. both fluence kinetics and resolution • Efficiency of irradiation and analysis, samples, time... • Experimental set-up description • Reflectance procedure • Options: light source (lasers, white light..), detectors, configurations • Results and discussion • Comparative of amorphous and crystalline phases
Resumo:
This research focused on the evaluation of damage formation on ±45º carbon fiber laminates subjected to tensile tests. The damage was evaluated by means of X-ray tomography. A high density of cracks developed during the plateau of the stress-strain curve and were qualitatively analyzed, showing that the inner plies eventually developed a higher crack concentration than the outer plies. Delamination started to occur in the outermost ply interface when the slope after the plateau of the stress-strain curve began to increase.
Resumo:
The city of Lorca (Spain) was hit on May 11th 2011 by two consecutive earthquakes with 4.6 and 5.2 Mw respectively, causing casualties and important damage in buildings. Lorca is located in the south-east region of Spain and settled on the trace of the Murcia-Totana-Lorca fault. Although the magnitudes of these ground motions were not severe, the damage observed was considerable over a great amount of buildings. More than 300 of them have been demolished and many others are being retrofitted. This paper reports a field study on the damage caused by these earthquakes. The observed damage is related with the structural typology. Further, prototypes of the damaged buildings are idealized with nonlinear numerical models and their seismic behavior and proneness to damage concentration is further investigated through dynamic response analyses.
Resumo:
The effect of infill walls on the behaviour of frames is widely recognized, and, for several decades now, has been the subject of numerous experimental investigations. However, the analytical modeling of infilled panels and frames under in-plane loading is difficult and generally unreliable. From the point of view of the simulation technique the models may be divided into micromodels and simplified (or macro-) models. Based on the equivalent strut approach (simplified model), in this paper a damage model is proposed for the characterization of masonry walls submitted to lateral cyclic loads. The model, developed along the lines of the Continuum Damage Mechanics, have the advantages of including explicitly the coupling between damage and mechanical behaviour and so is consistent with the definition of damage as a phenomenon with mechanical consequences.
Resumo:
Numerous damage models have been developed in order to analyse the seismic behavior. Among the different possibilities existing in the literature, it is very clear that models developed along the lines of Continuum Damage Mechanics are more consistent with the definition of damage like a phenomenon with mechanical consequences as they include explicitly the coupling between damage and mechanical behavior. On the other hand, for seismic processes, phenomena such as low cycle fatigue may have a pronounced effect on the overall behavior of the frames and, therefore, its consideration turns out to be very important. However, many of existing models evaluate the damage only as a function of the maximum amplitude of cyclic deformation without considering the number of cycles. In this paper, a generalization of the simplified model proposed by Flórez is made in order to include the low cycle fatigue. Such model employs in its formulation irreversible thermodynamics and internal state variable theory.
Resumo:
Many studies have been developed to analyze the structural seismic behavior through the damage index concept. The evaluation of this index has been employed to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based in a posterthquake evaluation in such a way they uncouple the structural response from the damage evaluation. In this paper, a generalization of the model by Flórez-López (1995) is proposed. The formulation employs irreversible thermodynamics and internal state variable theory applied to the study of beams and frames and it allows and explicit coupling between the degradation and the structural mechanical behavior. A damage index es defined in order to model elastoplasticity coupled with damage and fatigue damage.
Resumo:
The Centro de Micro-Análisis de Materiales (CMAM) in the Universidad Autónoma de Madrid is carrying out an extensive research program on the processes induced by high energy heavy mass ions (SHI) on dielectric materials and their photonic applications [1?21]. A significant part of this activity constitutes a relevant contribution to the scientific program associated to the TECHNOFUSION project. It is performed in collaboration with the Instituto de Fusion Nuclear at the UPM, the CIEMAT, the Departamento de Física de Materiales at UAM and several other national institutions (INTA) and international laboratories (GANIL, France), Legnaro Italy, Grenoble?. The program has led to a large number of publications in reputed international journals.
Resumo:
Production of back contact solar cells requires holes generations on the wafers to keep both positive and negative contacts on the back side of the cell. This drilling process weakens the wafer mechanically due to the presence of the holes and the damage introduced during the process as microcracks. In this study, several chemical processes have been applied to drilled wafers in order to eliminate or reduce the damage generated during this fabrication step. The treatments analyzed are the followings: alkaline etching during 1, 3 and 5 minutes, acid etching for 2 and 4 minutes and texturisation. To determine mechanical strength of the samples a common mechanical study has been carried out testing the samples by the Ring on Ring bending test and obtaining the stress state in the moment of failure by FE simulation. Finally the results obtained for each treatment were fitted to a three parameter Weibull distribution
Resumo:
In the present work a constitutive model is developed which permits the simulation of the low cycle fatigue behaviour in steel framed structures. In the elaboration of this model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models. In this type of formulation an explicit coupling between the damage and the structural mechanical behaviour is employed, allowing the possibility of considering as a whole different coupled phenomena. A damage index is defined in order to model elastoplasticity coupled with damage and fatigue damage.
Resumo:
During the past years, different laboratory impact response studies have been carrj.ec out in following fruits: apples (2 varieties), pears (4 varieties), Asian or Nashi pears (4 varieties), melons (2 varieties), peaches (2 varieties) and avocados. The methodology of the tests is described, as well as the results and observations obtained in each group of tests. Impact response is compared to bruising susceptibility, bruise characteristics (appearance and structural features) and varietal and ripeness differences.
Resumo:
Recent findings on the importance of losses due to damage incidence, on causes and on mechanisms of damage in fruits are reviewed and discussed. Incidence of damage in different fruits in some European markets has been -proved to be very high. Structure of fruit flesh and skin (hystology) is of foremost importance in the response of fruits to impacts and to compression. Continuous variation of fruit compositional and structural characteristics during maturation has to be taken into consideration when studying damage susceptibility.
Resumo:
Two electronic fruits (SEP-1, Simulated Electronic Product, developed in Scotland, and Techmark IS-100, Instrumented Sphere, developed in USA) have been compared in laboratory tests and then used to evaluate handling operations, in several cooperatives of two areas of Spain: Lérida (pome fruits) and Valencia (stone fruits). Advantages of each device were evaluated. Harvest, mechanical bin unloading, and grading line transfers and sizers were identified as operations causing fruit damage.