967 resultados para D-LOOP REGION
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la Barbarie : contenant les royaumes de Maroc, de Fez, d'Alger, de Tunis et de Tripoli, avec les déserts limitrophes de l'intérieur de l'Afrique, dressée sur les cartes des Ssrs. d'Anville et Robert de Vaugondy ; par P. Santini, 1775. It was published by P. Santini in 1775. Scale [ca. 1:4,900,000]. Covers North Africa and a portion of the Mediterranean coast of Europe. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, roads and routes, territorial boundaries, shoreline features, and more. Relief shown pictorially. Includes notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte ancienne et comparée de la Basse Égypte, rédigé par M. le Colonel Jacotin et par M. Jomard, Membre de l'Institut ; d'après la Grande Carte Topographique levée pendant l'expédition de l'Armée Française par les ingénieurs géographes, les ingénieurs militaires et les ingénieurs des ponts et chaussées ; Blondeau Sct. It was published by Impr. Royale between 1821 and 1823. Scale 1:500,000. Covers the Nile River Delta Region, Egypt. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Egypt Red Belt projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, canals, cities and other human settlements, shoreline features, and more. Relief shown by shading and hachures. Harvard Map Collection copies contain manuscript historical annotations and corrections.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de l'isthme, dressée sous la direction de Mr. Voisin ; d'après les opérations de Mr. Larousse ; Ch. Lecocq de la Frémondière del. It was published by E. Andriveau-Goujon, Rue du Bac in 1866. Scale 1:200,000. Covers the Suez Canal region, Egypt. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Egypt Red Belt projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, plans for the Suez Canal, other canals, roads, railroads, cities and other human settlements, ancient historic sites and ruins, shoreline features, and more. Relief shown by shading, hachures and spot heights. Depths shown by soundings. Includes insets: "Plan de la rade de Port Saïd, et de l'embouchure du Canal dans la Méditerranée" (1:50,000), "Plan d'Ismaïlia" (1;20,000) and "Plan de la rade de Suez et de l'embouchure du Canal dans la Mer Rouge" (1:50,000). Also shows the geological profile of the Suez Canal, and crosscuts of several sections.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la province d'Alger, dressée au Dépôt général de la guerre ; gravé par J. Schwaerzle. It was published by Imp. de Kaeppelin et Cie in 1843. Scale 1:400,000. Covers the Algiers region, Algeria. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, administrative boundaries, shoreline features, roads, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte historique, physique & politique de l'Egypte, dressée par le Ch.er Lapie, 1er Géographe du Roi, Officier supérieur au Corps Royal des Ingénieurs Géographes, d'après les itinéraires & les reconnaissances recueillis par MM. les Généraux Comtes Guilleminot, Tromelin & Fernig, ainsi que d'après ceux de MM. Pacho, Caillaud, Coste, Burckhardt, Irwin &c. et les travaux de la Commission d'Egypte, le tout appuyé sur les Observations Astronomiques de MM. Gauttier, Smith, Rüppel & Nouet ; gravé par Flahaut, Rue de l'Est, N°1 ; écrit par Hacq, Graveur du Dèpôt de la Guerre. It was published by Chez Ch. Picquet in 1828. Scale [ca 1:120,000]. Covers the Nile River and Red Sea regions. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Egypt Red Belt projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, roads, historic sites and ruins, and more. Relief shown by hachures. Includes insets: "Plan d'Alexandrie" (1:50,000) and "Plan du Caire" (1:50,000).This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte hydrographique de la Basse Égypte et d'une partie de l'Isthme de Suez où sont indiqués les travaux exécutés ou à exécuter, d'après les ordres de Son Altesse Mehémet-Ali, Vice-Roi d'Egypte. Avec le projet de communication directe des deux mers au travers de l'Isthme, par M. Linant de Bellefonds ; gravée par Schwaerzlé. It was published by Dépot Général de la Guerre de France in 1855. Scale 1:250,000. Covers the Nile River Delta region, Egypt. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Egypt Red Belt projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, canals, roads, railroads, cities and other human settlements, fortification, administrative boundaries, shoreline features, ruins and historical sites, and more. Relief shown by hachures. Includes also text, Profile de l'Isthme de Suèz, and notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte hydrographique de la partie septentrionale de la haute Égypt : ou sont indiqués les travaux d'arrosage exécutés ou à exécuter d'après les ordres de Son Altesse Mehémet-Ali, Vice-Roi d'Egypte, par M. Linant de Bellefonds ; gravée par Erhard. It was published by Dépôt de la Guerre in 1855. Scale 1:250,000. Covers a portion of the Nile River region near Asyūţ and Sūhāj, Egypt. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Egypt Red Belt projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, canals, roads, railroads, cities and other human settlements, administrative boundaries, ruins and historical sites, and more. Relief shown by hachures. Includes also text and notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de la basse Egypte et du canal maritime de Suez, dressée par Desbuissons ; gravé sur pier. et chrom. par P. Méa. It was published by E. Andriveau-Goujon in 1880. Scale 1:500,000. Covers the Nile River Delta and Suez Canal region, Egypt. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Lambert Conformal Conic projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, canals, railroads, selected buildings, cultivated and uncultivated lands, and more. Relief shown by hachures. Includes also insets: Plan d'Ismaïlia (1:25,000) -- Plan de la rade de Port Saïd et de l'embouchure du Canal dans la Méditerranée (1:60,000) -- Plan de la rade de Suez et de l'embouchure du Canal dans la Mer Rouge (1:60,000).This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
Research on the impact of innovation on regional economic performance in Europe has fundamentally followed three approaches: a) the analysis of the link between investment in R&D, patents, and economic growth; b) the study of the existence and efficiency of regional innovation systems; and c) the examination of geographical diffusion of regional knowledge spillovers. These complementary approaches have, however, rarely been combined. Important operational and methodological barriers have thwarted any potential cross-fertilization. In this paper, we try to fill this gap in the literature by combining in one model R&D, spillovers, and innovation systems approaches. A multiple regression analysis is conducted for all regions of the EU-25, including measures of R&D investment, proxies for regional innovation systems, and knowledge and socio-economic spillovers. This approach allows us to discriminate between the influence of internal factors and external knowledge and institutional flows on regional economic growth. The empirical results highlight how the interaction between local and external research with local and external socioeconomic and institutional conditions determines the potential of every region in order to maximise its innovation capacity. They also indicate the importance of proximity for the transmission of economically productive knowledge, as spillovers show strong distance decay effects. In the EU-25 context, only the innovative efforts pursued within a 180 minute travel radius have a positive and significant impact on regional growth performance.
Resumo:
The scarcity of records of Early Paleocene radiolarians has meant that while radiolarian biostratigraphy is firmly established as an important tool for correlation, there has been a long-standing gap between established zonations for the Cretaceous and from latest Paleocene to Recent. It has also led to considerable speculation over the level of faunal change across the Cretaceous/Tertiary (K/T) boundary. Consequently, the discovery of rich and diverse radiolarian assemblages in well-delineated K/T boundary sections within siliceous limestones of the Amuri Limestone Group in eastern Marlborough, New Zealand, is of great significance for biostratigraphy and K/T boundary research. This initial report is restricted to introducing a new latest Cretaceous to mid Late Paleocene zonation based on the radiolarian succession at four of these sections and a re-examination of faunas from coeval sediments at DSDP Site 208 (Lord Howe Rise). Three new Paleocene species are described: Amphisphaera aotea, Amphisphaera kina and Stichomitra wero. Six new interval zones are defined by the first appearances of the nominate species. In ascending order these are: Lithomelissa? hoplites Foreman (Zone RK9, Cretaceous), Amphisphaera aotea n. sp. (Zone RP1, Paleocene), Amphisphaera kina n. sp. (RP2), Stichomitra granulata Petrushevskaya (RP3), Buryellaforemanae petrushevskaya (RP4) and Buryella tetradica (RP5). Good age control from foraminifera and calcareous nannofossils permits close correlation with established microfossil zonations. Where age control is less reliable, radiolarian events are used to substantially improve correlation between the sections. No evidence is found for mass extinction of radiolarians at the end of the Cretaceous. However, the K/T boundary does mark a change from nassellarian to spumellarian dominance, due to a sudden influx of actinommids, which effectively reduces the relative abundance of many Cretaceous survivors. An accompanying influx of diatoms in the basal Paleocene of Marlborough, together with evidence for an increase of total radiolarian abundance, suggests siliceous plankton productivity increased across the K/T boundary. Possible causes for this apparently localised phenomenon are briefly discussed.
Resumo:
The grain sizes of gas hydrate crystallites are largely unknown in natural samples. Single grains are hardly detectable with electron or optical microscopy. For the first time, we have used high-energy synchrotron diffraction to determine grain sizes of six natural gas hydrates retrieved from the Bush Hill region in the Gulf of Mexico and from ODP Leg 204 at the Hydrate Ridge offshore Oregon from varying depth between 1 and 101 metres below seafloor. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. Gas hydrate grain sizes were measured at the Beam Line BW 5 at the HASYLAB/Hamburg. A 'moving area detector method', originally developed for material science applications, was used to obtain both spatial and orientation information about gas hydrate grains within the sample. The gas hydrate crystal sizes appeared to be (log-)normally distributed in the natural samples. All mean grain sizes lay in the range from 300 to 600 µm with a tendency for bigger grains to occur in greater depth. Laboratory-produced methane hydrate, aged for 3 weeks, showed half a log-normal curve with a mean grain size value of c. 40 µm. The grains appeared to be globular shaped.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
"November 1990."
Resumo:
"Study made under a fellowship awarded by the Charles Lathrop Pack forestry foundation."
Resumo:
Texas Department of Transportation, Austin