908 resultados para Coral reefs and islands.
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
This publication of the NOAA Professional Paper NMFS Series is the product of a special symposium on “Emerging Technologies for Reef Fisheries Research and Management” held during the 56th annual Gulf and Caribbean Fisheries Institute meeting in Tortola, British Virgin Islands, November 2003. The purpose of this collection is to highlight the diversity of questions and issues in reef fisheries management that are benefiting from applications of technology. Topics cover a wide variety of questions and issues from the study of individual behavior, distribution and abundance of groups and populations, and associations between habitats and fish and shellfish species.(PDF files contains 124 pages.)
Resumo:
Greenland turbot (Reinhardtius hippoglossoides) is a commercially important flounder in both the North Atlantic and North Pacific Oceans. In the latter, its center of abundance is in the eastern Bering Sea and along the Aleutian Islands chain where its population is managed as a single stock. Harvest levels in this region of the North Pacific during the period 1970-81 were comparable with those in the northwest and northeast Atlantic, with annual average catches of 53,000 metric tons (t). However, the catch in 1984 dropped sharply to 23,100 t, in part because of reduced quotas arising from concern over continued poor recruitment and declining catch-per-unit-effort. Recruitment failure was manifested in 1) the sharp decline in the catch rate of young flsh in annual research trawl surveys on the continental shelf of the eastern Bering Sea and 2) an increasing proportion of older and larger fish in the commercial catch from the continental slope of both the eastern Bering Sea and Aleutian Islands. The cause ofthe decline in recruitment could not be clearly identifled. Greenland turbot of the Bering Sea-Aleutian Islands share certain distributional features with the North Atlantic form. There is an apparent bathymetric change in the size and age of fish, with younger animals occupying continental shelf depths and the older individuals residing at depths of the continental slope. At shallow depths the young are exposed to temperature fluctuations, whereas older animals along the slope are exposed to relatively stable temperatures. A hypothesis is proposed for describing the temporal and spatial paths by which young animals reach the mature or spawning portion of the population. (PDF file contains 38 pages.)
Resumo:
Long paleoseismic histories are necessary for understanding the full range of behavior of faults, as the most destructive events often have recurrence intervals longer than local recorded history. The Sunda megathrust, the interface along which the Australian plate subducts beneath Southeast Asia, provides an ideal natural laboratory for determining a detailed paleoseismic history over many seismic cycles. The outer-arc islands above the seismogenic portion of the megathrust cyclically rise and subside in response to processes on the underlying megathrust, providing uncommonly good illumination of megathrust behavior. Furthermore, the growth histories of coral microatolls, which record tectonic uplift and subsidence via relative sea level, can be used to investigate the detailed coseismic and interseismic deformation patterns. One particularly interesting area is the Mentawai segment of the megathrust, which has been shown to characteristically fail in a series of ruptures over decades, rather than a single end-to-end rupture. This behavior has been termed a seismic “supercycle.” Prior to the current rupture sequence, which began in 2007, the segment previously ruptured during the 14th century, the late 16th to late 17th century, and most recently during historical earthquakes in 1797 and 1833. In this study, we examine each of these previous supercycles in turn.
First, we expand upon previous analysis of the 1797–1833 rupture sequence with a comprehensive review of previously published coral microatoll data and the addition of a significant amount of new data. We present detailed maps of coseismic uplift during the two great earthquakes and of interseismic deformation during the periods 1755–1833 and 1950–1997 and models of the corresponding slip and coupling on the underlying megathrust. We derive magnitudes of Mw 8.7–9.0 for the two historical earthquakes, and determine that the 1797 earthquake fundamentally changed the state of coupling on the fault for decades afterward. We conclude that while major earthquakes generally do not involve rupture of the entire Mentawai segment, they undoubtedly influence the progression of subsequent ruptures, even beyond their own rupture area. This concept is of vital importance for monitoring and forecasting the progression of the modern rupture sequence.
Turning our attention to the 14th century, we present evidence of a shallow slip event in approximately A.D. 1314, which preceded the “conventional” megathrust rupture sequence. We calculate a suite of slip models, slightly deeper and/or larger than the 2010 Pagai Islands earthquake, that are consistent with the large amount of subsidence recorded at our study site. Sea-level records from older coral microatolls suggest that these events occur at least once every millennium, but likely far less frequently than their great downdip neighbors. The revelation that shallow slip events are important contributors to the seismic cycle of the Mentawai segment further complicates our understanding of this subduction megathrust and our assessment of the region’s exposure to seismic and tsunami hazards.
Finally, we present an outline of the complex intervening rupture sequence that took place in the 16th and 17th centuries, which involved at least five distinct uplift events. We conclude that each of the supercycles had unique features, and all of the types of fault behavior we observe are consistent with highly heterogeneous frictional properties of the megathrust beneath the south-central Mentawai Islands. We conclude that the heterogeneous distribution of asperities produces terminations and overlap zones between fault ruptures, resulting in the seismic “supercycle” phenomenon.
Resumo:
Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has focused attention on the need to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Virgin Islands National Park, was conducted from 2001 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by amphibian species in each habitat. Line transect methods were used to estimate density of some amphibian species and double observer analysis was used to refine counts based on detection probabilities. Opportunistic collections were used to augment the visual encounter methods for rare species. Data were collected during four sampling periods and every major trail system throughout the park was surveyed. All of the amphibian species believed to occur on St. John were detected during these surveys. One species not previously reported, the Cuban treefrog (Osteopilus septentrionalis), was also added to the species list. That species and two others (Eleutherodactylus coqui and Eleutherodactylus lentus) bring the total number of introduced amphibians on St. John to three. We detected most of the reptile species thought to occur on St. John, but our methods were less suitable for reptiles compared to amphibians. No amphibian species appear to be in decline at this time. We found no evidence of disease or of malformations. Our surveys provide a snapshot picture of the status of the amphibian species, so continued monitoring would be necessary to determine long-term trends, but several potential threats to amphibians were identified. Invasive species, especially the Cuban treefrog, have the potential to decrease populations of native amphibians. Introduced mammalian predators are also a potential threat, especially to the reptiles of St. John, and mammalian grazers might have indirect effects on amphibians and reptiles through habitat modification. Finally, loss of habitat to development outside the park boundary could harm some important populations of amphibians and reptiles on the island.
Resumo:
The Marquesas Islands are located in the Pacific Ocean at about 9 degrees south latitude and 140 degrees west longitude (Figure 1). It has been demonstrated by tagging (Anonymous, 1980b) that skipjack tuna, Katsuwonus pelamis, which occur in the northeastern Pacific Ocean have migrated to the Hawaiian Islands and Christmas Island in the central Pacific and also to the area between the Marshall and Mariana islands in the western Pacific. The Tuamotu, Society, Pitcairn, and Gambier islands, though the first two are not as close to the principal fishing areas of the eastern Pacific Ocean as are the Marquesas Islands, and the last two are small and isolated, are of interest for the same reasons that the Marquesas Islands are of interest, and thus skipjack should be tagged in those islands for the same reason that they should be tagged in the Marquesas Islands. The organizations which participated in the Marquesas Islands tagging and other scientific activities were the Inter-American Tropical Tuna Commission (IATTC), the South Pacific Commission (SPC), the Centre National pour l'Exploitation des Oceans (CNEXO), the Office de la Recherche Scientifique et Technique Outre-Mer (ORSTOM), the Service de la Peche de la Polynesie Francaise (SPPF), and the Service de l'Economie Rural (SER).