968 resultados para Consumption Rate
Resumo:
Standard approaches for ellipse fitting are based on the minimization of algebraic or geometric distance between the given data and a template ellipse. When the data are noisy and come from a partial ellipse, the state-of-the-art methods tend to produce biased ellipses. We rely on the sampling structure of the underlying signal and show that the x- and y-coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals, and that their parameters are estimable from partial data. We consider both uniform and nonuniform sampling scenarios in the presence of noise and show that the data can be modeled as a sum of random amplitude-modulated complex exponentials. A low-pass filter is used to suppress noise and approximate the data as a sum of weighted complex exponentials. The annihilating filter used in FRI approaches is applied to estimate the sampling interval in the closed form. We perform experiments on simulated and real data, and assess both objective and subjective performances in comparison with the state-of-the-art ellipse fitting methods. The proposed method produces ellipses with lesser bias. Furthermore, the mean-squared error is lesser by about 2 to 10 dB. We show the applications of ellipse fitting in iris images starting from partial edge contours, and to free-hand ellipses drawn on a touch-screen tablet.
Resumo:
In this paper the soft lunar landing with minimum fuel expenditure is formulated as a nonlinear optimal guidance problem. The realization of pinpoint soft landing with terminal velocity and position constraints is achieved using Model Predictive Static Programming (MPSP). The high accuracy of the terminal conditions is ensured as the formulation of the MPSP inherently poses final conditions as a set of hard constraints. The computational efficiency and fast convergence make the MPSP preferable for fixed final time onboard optimal guidance algorithm. It has also been observed that the minimum fuel requirement strongly depends on the choice of the final time (a critical point that is not given due importance in many literature). Hence, to optimally select the final time, a neural network is used to learn the mapping between various initial conditions in the domain of interest and the corresponding optimal flight time. To generate the training data set, the optimal final time is computed offline using a gradient based optimization technique. The effectiveness of the proposed method is demonstrated with rigorous simulation results.
Resumo:
With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.
Resumo:
Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.
Resumo:
Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recognition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform a mode-shape classification, which is formulated as a supervised binary classification problem - mode-shapes representing the syllabic nuclei as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average F-scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.
Resumo:
The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.
Resumo:
For this sake, the macroscopic equations of mechanics and the kinetic equations of the microstructural transformations should form a unified set that be solved simultaneously. As a case study of coupling length and time scales, the trans-scale formulation
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
On the basis of the well-known shear-lag analysis of fibre/matrix interface stresses and the assumption of identical axial strains in the fibre and matrix, a new model for predicting the energy release rate of interfacial fracture of the fibre pull-out test model is attempted. The expressions for stresses in the fibre, matrix and interface are derived. The formula for interfacial debonding energy release rate is given. Numerical calculations are conducted and the results obtained are compared with those of the existing models.
Resumo:
In this paper, micro gas sensor was fabricated using indium oxide nanowire for effective gas detection and monitoring system. Indium oxide nanowire was grown using thermal CVD, and their structural properties were examined by the SEM, XRD and TEM. The electric properties for microdropped indium oxide nanowire device were measured, and gas response characteristics were examined for CO gas. Sensors showed high sensitivity and stability for CO gas. And with below 20 mw power consumption, 5 ppm CO could be detected.
Resumo:
A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.
Resumo:
At high temperature rise rate, the mechanical properties of 10 # steel were determined experimentally in a very wide range of temperature and strain rates. A new constitutive relationship was put forward, which can fit with the experimental results and describe various phenomena observed in our experiments. Meanwhile, some interesting characteristics about the temperature rise rate, strain and strain rate hardening and thermal softening are also shown in this paper. Finally, the reliability of the constitutive law and the correctness of the constitutive parameters were verified by comparing the calculation results with the experimental data.