969 resultados para Consistent term structure models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subjective well-being (SWB) refers to how individuals evaluate and experience their lives in positive ways, and encompasses global judgments of life satisfaction (LS), as well as the frequency of positive and negative affect (PA and NA, respectively) in one’s life. To inform the current ambiguity concerning the structure of SWB, the aim of this Masters thesis was to evaluate the structure of SWB based on whether the three components of SWB change together or independently naturally, over time and following experimental manipulation. In Study 1, associations among changes in LS, PA, and NA were evaluated using a longitudinal approach tracking natural changes in the components over periods of three months and three years. Results indicated that change in one component was related to change in the other two components. In Study 2, an experimental design was used to manipulate each SWB component individually, and evaluate changes in all three components following each manipulation. Manipulation materials designed to target LS only were effective (i.e., led to heightened focus on LS, and not PA or NA) and created an increase in both LS and PA. Manipulation materials designed to target PA and NA only were not effective (i.e., led to heightened focus on the target component, as well as on LS). Furthermore, in both studies the strength of an individual’s SWB (assessed in terms of structural consistency and structural ambivalence in Study 1 and Study 2, along with subjective ambivalence in Study 2) did not consistently moderate the degree to which changes in the components were associated with one another. Together, these findings indicate that the structure of SWB may be complex and dynamic, rather than static. Alternatively, the components of SWB may not be easily manipulated in isolation of one another. Implications for existing structural models of SWB are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing complexity of healthcare needs of residents living in long-term care necessitates a high level of professional interdependence to deliver quality, individualized care. Personal support workers (PSWs) are the most likely to observe, interpret and respond to resident care plans, yet little is known about how they experience collaboration. This study aimed to describe PSWs’ current experiences with collaboration in long-term care and to understand the factors that influenced their involvement in collaboration. A qualitative approach was used to interview eight PSWs from one long-term care facility in rural Ontario. Thematic analysis revealed three themes: valuing PSWs’ contributions, organizational structure, and individual characteristics and relationships. Collaboration was a difficult process for PSWs who felt largely undervalued and excluded. To improve collaboration, management needs to provide opportunities for PSWs to contribute and support the development of relationships required to collaborate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a model of money demand where the opportunity cost of holding money is subject to regime changes. The regimes are fully characterized by the mean and variance of inflation and are assumed to be the result of alternative government policies. Agents are unable to directly observe whether government actions are indeed consistent with the inflation rate targeted as part of a stabilization program but can construct probability inferences on the basis of available observations of inflation and money growth. Government announcements are assumed to provide agents with additional, possibly truthful information regarding the regime. This specification is estimated and tested using data from the Israeli and Argentine high inflation periods. Results indicate the successful stabilization program implemented in Israel in July 1985 was more credible than either the earlier Israeli attempt in November 1984 or the Argentine programs. Government’s signaling might substantially simplify the inference problem and increase the speed of learning on the part of the agents. However, under certain conditions, it might increase the volatility of inflation. After the introduction of an inflation stabilization plan, the welfare gains from a temporary increase in real balances might be high enough to induce agents to raise their real balances in the short-term, even if they are uncertain about the nature of government policy and the eventual outcome of the stabilization attempt. Statistically, the model restrictions cannot be rejected at the 1% significance level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full understanding of public affairs requires the ability to distinguish between the policies that voters would like the government to adopt, and the influence that different voters or group of voters actually exert in the democratic process. We consider the properties of a computable equilibrium model of a competitive political economy in which the economic interests of groups of voters and their effective influence on equilibrium policy outcomes can be explicitly distinguished and computed. The model incorporates an amended version of the GEMTAP tax model, and is calibrated to data for the United States for 1973 and 1983. Emphasis is placed on how the aggregation of GEMTAP households into groups within which economic and political behaviour is assumed homogeneous affects the numerical representation of interests and influence for representative members of each group. Experiments with the model suggest that the changes in both interests and influence are important parts of the story behind the evolution of U.S. tax policy in the decade after 1973.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In practice we often face the problem of assigning indivisible objects (e.g., schools, housing, jobs, offices) to agents (e.g., students, homeless, workers, professors) when monetary compensations are not possible. We show that a rule that satisfies consistency, strategy-proofness, and efficiency must be an efficient generalized priority rule; i.e. it must adapt to an acyclic priority structure, except -maybe- for up to three agents in each object's priority ordering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Thèse présentée à la Faculté des études supérieures En vue de l'obtention du grade de Docteur en droit (LL.D.)"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titre de la page de titre additionnel: Ghost dancing at the Supreme Court of Canada : indigenous rights during the First quarter century of s.35.of Canada's Constitution Act, 1982.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse porte sur le rôle de l’espace dans l’organisation et dans la dynamique des communautés écologiques multi-espèces. Deux carences peuvent être identifiées dans les études théoriques actuelles portant sur la dimension spatiale des communautés écologiques : l’insuffisance de modèles multi-espèces représentant la dimension spatiale explicitement, et le manque d’attention portée aux interactions positives, tel le mutualisme, en dépit de la reconnaissance de leur ubiquité dans les systèmes écologiques. Cette thèse explore cette problématique propre à l’écologie des communautés, en utilisant une approche théorique s’inspirant de la théorie des systèmes complexes et de la mécanique statistique. Selon cette approche, les communautés d’espèces sont considérées comme des systèmes complexes dont les propriétés globales émergent des interactions locales entre les organismes qui les composent, et des interactions locales entre ces organismes et leur environnement. Le premier objectif de cette thèse est de développer un modèle de métacommunauté multi-espèces, explicitement spatial, orienté à l’échelle des individus et basé sur un réseau d’interactions interspécifiques générales comprenant à la fois des interactions d’exploitation, de compétition et de mutualisme. Dans ce modèle, les communautés locales sont formées par un processus d’assemblage des espèces à partir d’un réservoir régional. La croissance des populations est restreinte par une capacité limite et leur dynamique évolue suivant des mécanismes simples de reproduction et de dispersion des individus. Ces mécanismes sont dépendants des conditions biotiques et abiotiques des communautés locales et leur effet varie en fonction des espèces, du temps et de l’espace. Dans un deuxième temps, cette thèse a pour objectif de déterminer l’impact d’une connectivité spatiale croissante sur la dynamique spatiotemporelle et sur les propriétés structurelles et fonctionnelles de cette métacommunauté. Plus précisément, nous évaluons différentes propriétés des communautés en fonction du niveau de dispersion des espèces : i) la similarité dans la composition des communautés locales et ses patrons de corrélations spatiales; ii) la biodiversité locale et régionale, et la distribution locale de l’abondance des espèces; iii) la biomasse, la productivité et la stabilité dynamique aux échelles locale et régionale; et iv) la structure locale des interactions entre les espèces. Ces propriétés sont examinées selon deux schémas spatiaux. D’abord nous employons un environnement homogène et ensuite nous employons un environnement hétérogène où la capacité limite des communautés locales évoluent suivant un gradient. De façon générale, nos résultats révèlent que les communautés écologiques spatialement distribuées sont extrêmement sensibles aux modes et aux niveaux de dispersion des organismes. Leur dynamique spatiotemporelle et leurs propriétés structurelles et fonctionnelles peuvent subir des changements profonds sous forme de transitions significatives suivant une faible variation du niveau de dispersion. Ces changements apparaissent aussi par l’émergence de patrons spatiotemporels dans la distribution spatiale des populations qui sont typiques des transitions de phases observées généralement dans les systèmes physiques. La dynamique de la métacommunauté présente deux régimes. Dans le premier régime, correspondant aux niveaux faibles de dispersion des espèces, la dynamique d’assemblage favorise l’émergence de communautés stables, peu diverses et formées d’espèces abondantes et fortement mutualistes. La métacommunauté possède une forte diversité régionale puisque les communautés locales sont faiblement connectées et que leur composition demeure ainsi distincte. Par ailleurs dans le second régime, correspondant aux niveaux élevés de dispersion, la diversité régionale diminue au profit d’une augmentation de la diversité locale. Les communautés locales sont plus productives mais leur stabilité dynamique est réduite suite à la migration importante d’individus. Ce régime est aussi caractérisé par des assemblages incluant une plus grande diversité d’interactions interspécifiques. Ces résultats suggèrent qu’une augmentation du niveau de dispersion des organismes permet de coupler les communautés locales entre elles ce qui accroît la coexistence locale et favorise la formation de communautés écologiques plus riches et plus complexes. Finalement, notre étude suggère que le mutualisme est fondamentale à l’organisation et au maintient des communautés écologiques. Les espèces mutualistes dominent dans les habitats caractérisés par une capacité limite restreinte et servent d’ingénieurs écologiques en facilitant l’établissement de compétiteurs, prédateurs et opportunistes qui bénéficient de leur présence.