888 resultados para Computational experiment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group analysed some syntactic and phonological phenomena that presuppose the existence of interrelated components within the lexicon, which motivate the assumption that there are some sublexicons within the global lexicon of a speaker. This result is confirmed by experimental findings in neurolinguistics. Hungarian speaking agrammatic aphasics were tested in several ways, the results showing that the sublexicon of closed-class lexical items provides a highly automated complex device for processing surface sentence structure. Analysing Hungarian ellipsis data from a semantic-syntactic aspect, the group established that the lexicon is best conceived of being as split into at least two main sublexicons: the store of semantic-syntactic feature bundles and a separate store of sound forms. On this basis they proposed a format for representing open-class lexical items whose meanings are connected via certain semantic relations. They also proposed a new classification of verbs to account for the contribution of the aspectual reading of the sentence depending on the referential type of the argument, and a new account of the syntactic and semantic behaviour of aspectual prefixes. The partitioned sets of lexical items are sublexicons on phonological grounds. These sublexicons differ in terms of phonotactic grammaticality. The degrees of phonotactic grammaticality are tied up with the problem of psychological reality, of how many degrees of this native speakers are sensitive to. The group developed a hierarchical construction network as an extension of the original General Inheritance Network formalism and this framework was then used as a platform for the implementation of the grammar fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results from the Sub-keV Atom Reflecting Analyzer (SARA) experiment onboard Chandrayaan-1 have revealed several hitherto unknown and interesting aspects about the interaction of solar wind with the Moon. The SARA experiment had two sensors — CENA and SWIM. The Chandrayaan-1 energetic neutrals analyzer (CENA), detected energetic neutral atoms (ENAs), and the Solar Wind Monitor (SWIM) measured ions of solar wind origin. In this review, we summarize the observations made by the SARA experiment, which are: (1) substantial (~20%) and sustained backscattering of solar wind protons from lunar surface as energetic neutral hydrogen,1 (2) minimagnetosphere around magnetic anomalies on Moon using the backscattered ENAs,2 (3) reflection of solar wind protons from the Moon surface,3 (4) huge (~50%) deflection of solar wind protons over strong magnetic anomalies,4 and (5) presence of protons in the near-lunar plasma wake.5 These results have implications on the lunar plasma environment, implantation of solar wind hydrogen on lunar surface, and behavior of small scale magnetic anomalies on planetary bodies. The SARA observations suggest that similar processes may happen on other airless bodies covered with regolith in the solar system as well as in extra-solar system. This paper presents a review of the results obtained from the SARA observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. We detail some of the design decisions, software paradigms and operational strategies that have allowed a small number of researchers to provide a wide variety of innovative, extensible, software solutions in a relatively short time. The use of an object oriented programming paradigm, the adoption and development of a software package system, designing by contract, distributed development and collaboration with other projects are elements of this project's success. Individually, each of these concepts are useful and important but when combined they have provided a strong basis for rapid development and deployment of innovative and flexible research software for scientific computation. A primary objective of this initiative is achievement of total remote reproducibility of novel algorithmic research results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article gives an overview over the methods used in the low--level analysis of gene expression data generated using DNA microarrays. This type of experiment allows to determine relative levels of nucleic acid abundance in a set of tissues or cell populations for thousands of transcripts or loci simultaneously. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. This includes the design of probes, the experimental design, the image analysis of microarray scanned images, the normalization of fluorescence intensities, the assessment of the quality of microarray data and incorporation of quality information in subsequent analyses, the combination of information across arrays and across sets of experiments, the discovery and recognition of patterns in expression at the single gene and multiple gene levels, and the assessment of significance of these findings, considering the fact that there is a lot of noise and thus random features in the data. For all of these components, access to a flexible and efficient statistical computing environment is an essential aspect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.