932 resultados para Coffee - Quality control
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
The microwave synthesis of MnC2O4·2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H2O4·2H2O) and Mn(OAc)2·4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.
Resumo:
Between 1995 and 2003, 129 cemented primary THRs were performed using full acetabular impaction grafting to reconstruct acetabular deficiencies. These were classified as cavitary in 74 and segmental in 55 hips. Eighty-one patients were reviewed at mean 9.1 (6.2-14.3) years post-operatively. There were seven acetabular component revisions due to aseptic loosening, and a further 11 cases that had migrated >5mm or tilted >5° on radiological review - ten of which reported no symptoms. Kaplan-Meier analysis of revisions for aseptic loosening demonstrates 100% survival at nine years for cavitary defects compared to 82.6% for segmental defects. Our results suggest that the medium-term survival of this technique is excellent when used for purely cavitary defects but less predictable when used with large rim meshes in segmental defects.
Resumo:
Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.
Resumo:
Dear Editor We thank Dr Klek for his interest in our article and giving us the opportunity to clarify our study and share our thoughts. Our study looks at the prevalence of malnutrition in an acute tertiary hospital and tracked the outcomes prospectively.1 There are a number of reasons why we chose Subjective Global Assessment (SGA) to determine the nutritional status of patients. Firstly, we took the view that nutrition assessment tools should be used to determine nutrition status and diagnose presence and severity of malnutrition; whereas the purpose of nutrition screening tools are to identify individuals who are at risk of malnutrition. Nutritional assessment rather than screening should be used as the basis for planning and evaluating nutrition interventions for those diagnosed with malnutrition. Secondly, Subjective Global Assessment (SGA) has been well accepted and validated as an assessment tool to diagnose the presence and severity of malnutrition in clinical practice.2, 3 It has been used in many studies as a valid prognostic indicator of a range of nutritional and clinical outcomes.4, 5, 6 On the other hand, Malnutrition Universal Screening Tool (MUST)7 and Nutrition Risk Screening 2002 (NRS 2002)8 have been established as screening rather than assessment tools.
Resumo:
A multi-faceted study is conducted with the objective of estimating the potential fiscal savings in annoyance and sleep disturbance related health costs due to providing improved building acoustic design standards. This study uses balcony acoustic treatments in response to road traffic noise as an example. The study area is the State of Queensland in Australia, where regional road traffic noise mapping data is used in conjunction with standard dose–response curves to estimate the population exposure levels. The background and the importance of using the selected road traffic noise indicators are discussed. In order to achieve the objective, correlations between the mapping indicator (LA10 (18 hour)) and the dose response curve indicators (Lden and Lnight) are established via analysis on a large database of road traffic noise measurement data. The existing noise exposure of the study area is used to estimate the fiscal reductions in health related costs through the application of simple estimations of costs per person per year per degree of annoyance or sleep disturbance. The results demonstrate that balcony acoustic treatments may provide a significant benefit towards reducing the health related costs of road traffic noise in a community.
Resumo:
We examine which capabilities technologies provide to support collaborative process modeling. We develop a model that explains how technology capabilities impact cognitive group processes, and how they lead to improved modeling outcomes and positive technology beliefs. We test this model through a free simulation experiment of collaborative process modelers structured around a set of modeling tasks. With our study, we provide an understanding of the process of collaborative process modeling, and detail implications for research and guidelines for the practical design of collaborative process modeling.
Resumo:
A quasi-maximum likelihood procedure for estimating the parameters of multi-dimensional diffusions is developed in which the transitional density is a multivariate Gaussian density with first and second moments approximating the true moments of the unknown density. For affine drift and diffusion functions, the moments are exactly those of the true transitional density and for nonlinear drift and diffusion functions the approximation is extremely good and is as effective as alternative methods based on likelihood approximations. The estimation procedure generalises to models with latent factors. A conditioning procedure is developed that allows parameter estimation in the absence of proxies.
Resumo:
The increased popularity of mopeds and motor scooters in Australia and elsewhere in the last decade has contributed substantially to the greater use of powered two-wheelers (PTWs) as a whole. As the exposure of mopeds and scooters has increased, so too has the number of reported crashes involving those PTW types, but there is currently little research comparing the safety of mopeds and, particularly, larger scooters with motorcycles. This study compared the crash risk and crash severity of motorcycles, mopeds and larger scooters in Queensland, Australia. Comprehensive data cleansing was undertaken to separate motorcycles, mopeds and larger scooters in police-reported crash data covering the five years to 30 June 2008. The crash rates of motorcycles (including larger scooters) and mopeds in terms of registered vehicles were similar over this period, although the moped crash rate showed a stronger downward trend. However, the crash rates in terms of distance travelled were nearly four times higher for mopeds than for motorcycles (including larger scooters). More comprehensive distance travelled data is needed to confirm these findings. The overall severity of moped and scooter crashes was significantly lower than motorcycle crashes but an ordered probit regression model showed that crash severity outcomes related to differences in crash characteristics and circumstances, rather than differences between PTW types per se. Greater motorcycle crash severity was associated with higher (>80 km/h) speed zones, horizontal curves, weekend, single vehicle and nighttime crashes. Moped crashes were more severe at night and in speed zones of 90 km/h or more. Larger scooter crashes were more severe in 70 km/h zones (than 60 km/h zones) but not in higher speed zones, and less severe on weekends than on weekdays. The findings can be used to inform potential crash and injury countermeasures tailored to users of different PTW types.
Resumo:
We study a political economy model which aims to understand the diversity in the growth and technology-adoption experiences in different economies. In this model the cost of technology adoption is endogenous and varies across heterogeneous agents. Agents in the model vote on the proportion of revenues allocated towards such expenditures. In the early stages of development, the political-economy outcome of the model ensures that a sub-optimal proportion of government revenue is used to finance adoption-cost reducing expenditures. This sub-optimality is due to the presence of inequality; agents at the lower end of the distribution favor a larger amount of revenue allocated towards redistribution in the form of lump-sum transfers. Eventually all individuals make the switch to the better technology and their incomes converge. The outcomes of the model therefore explain why public choice is more likely to be conservative in nature; it represents the majority choice given conflicting preferences among agents. Consequently, the transition path towards growth and technology adoption varies across countries depending on initial levels of inequality.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
This research evaluated the effect of obesity on the acute cumulative transverse strain of the Achilles tendon in response to exercise. Twenty healthy adult males were categorized into ‘low normal-weight’ (BMI <23 kg m−2) and ‘overweight’ (BMI >27.5 kg m−2) groups based on intermediate cut-off points recommended by the World Health Organization. Longitudinal sonograms of the right Achilles tendon were acquired immediately prior and following weight-bearing ankle exercises. Achilles tendon thickness was measured 20-mm proximal to the calcaneal insertion and transverse tendon strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness. The Achilles tendon was thicker in the overweight group both prior to (t18 = −2.91, P = 0.009) and following (t18 = −4.87, P < 0.001) exercise. The acute transverse strain response of the Achilles tendon in the overweight group (−10.7 ± 2.5%), however, was almost half that of the ‘low normal-weight’ (−19.5 ± 7.4%) group (t18 = −3.56, P = 0.004). These findings suggest that obesity is associated with structural changes in tendon that impairs intra-tendinous fluid movement in response to load and provides new insights into the link between tendon pathology and overweight and obesity.
Resumo:
“Informed learning” is a pedagogy that focuses on learning subject content through engaging with academic or professional information practices. Adopting the position that more powerful learning is achieved where students are taught how to use information and subject content simultaneously, the research reported here investigated an informed learning lesson. Using phenomenographic methods, student’s experiences of the lesson were compared to what the teacher enacted in the classroom. Based on an analysis of student interviews using variation theory, three ways of experiencing the informed learning lesson emerged. Some students understood the lesson to be about learning to use information, i.e., researching and writing an academic paper, while others understood it as focusing on understanding both subject content and information use simultaneously. Although the results of this study are highly contextualized, the findings suggest criteria to consider when designing informed learning lessons.
Resumo:
To ensure better concrete quality and long-term durability, there has been an increasing focus in recent years on the development of test methods for quality control of concrete. This paper presents a study to evaluate the effect of water accessible porosity and oven-dry unit weight on the resistance of concrete to chloride-ion penetration. Based on the experimental results and regression analyses, empirical relationships of the charge passed (ASTM C 1202) and chloride migration coefficient (NT Build 492) versus the water accessible porosity and oven dry unit weight of the concrete are established. Using basic physical properties of water accessible porosity and oven dry unit weight which can be easily determined, total charge passed and migration coefficient of the concrete can be estimated for quality control and for estimating durability of concrete.
Resumo:
This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.