944 resultados para Chesterman, Andrew: Memes of translation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In many organisms nonsense mutations decrease the level of mRNA. In the case of mammalian cells, it is still controversial whether translation is required for this nonsense-mediated RNA decrease (NMD). Although previous analyzes have shown that conditions that impede translation termination at nonsense codons also prevent NMD, the residual level of termination was unknown in these experiments. Moreover, the conditions used to impede termination might also have interfered with NMD in other ways. Because of these uncertainties, we have tested the effects of limiting translation of a nonsense codon in a different way, using two mutations in the immunoglobulin μ heavy chain gene. For this purpose we exploited an exceptional nonsense mutation at codon 3, which efficiently terminates translation but nonetheless maintains a high level of μ mRNA. We have shown 1) that translation of Ter462 in the double mutant occurs at only ∼4% the normal frequency, and 2) that Ter462 in cis with Ter3 can induce NMD. That is, translation of Ter462 at this low (4%) frequency is sufficient to induce NMD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 5′-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bγ) and 2 (eIF2γ), respectively. The involvement of eIF2Bγ and eIF2γ in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Positive-strand RNA virus genomes are substrates for translation, RNA replication, and encapsidation. To identify host factors involved in these functions, we used the ability of brome mosaic virus (BMV) RNA to replicate in yeast. We report herein identification of a mutation in the essential yeast gene DED1 that inhibited BMV RNA replication but not yeast growth. DED1 encodes a DEAD (Asp-Glu-Ala-Asp)-box RNA helicase required for translation initiation of all yeast mRNAs. Inhibition of BMV RNA replication by the mutant DED1 allele (ded1–18) resulted from inhibited expression of viral polymerase-like protein 2a, encoded by BMV RNA2. Inhibition of RNA2 translation was selective, with no effect on general cellular translation or translation of BMV RNA1-encoded replication factor 1a, and was independent of p20, a cellular antagonist of DED1 function in translation. Inhibition of RNA2 translation in ded1–18 yeast required the RNA2 5′ noncoding region (NCR), which also conferred a ded1–18-specific reduction in expression on a reporter gene mRNA. Comparison of the similar RNA1 and RNA2 5′ NCRs identified a 31-nucleotide RNA2-specific region that was required for the ded1–18-specific RNA2 translation block and attenuated RNA2 translation in wild-type yeast. Further comparisons and RNA structure predictions suggest a modular arrangement of replication and translation signals in RNA1 and RNA2 5′ NCRs that appears conserved among bromoviruses. The 5′ attenuator and DED1 dependence of RNA2 suggest that, despite its divided genome, BMV regulates polymerase translation relative to other replication factors, just as many single-component RNA viruses use translational read-through and frameshift mechanisms to down-regulate polymerase. The results show that a DEAD-box helicase can selectively activate translation of a specific mRNA and may provide a paradigm for translational regulation by other members of the ubiquitous DEAD-box RNA helicase family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Translation inhibitors such as chloramphenicol in prokaryotes or cycloheximide in eukaryotes stabilize many or most cellular mRNAs. In Escherichia coli, this stabilization is ascribed generally to the shielding of mRNAs by stalled ribosomes. To evaluate this interpretation, we examine here how inhibitors affect the stabilities of two untranslated RNAs, i.e., an engineered lacZ mRNA lacking a ribosome binding site, and a small regulatory RNA, RNAI. Whether they block elongation or initiation, all translation inhibitors tested stabilized these RNAs, indicating that stabilization does not necessarily reflect changes in packing or activity of translating ribosomes. Moreover, both the initial RNase E-dependent cleavage of RNAI and lacZ mRNA and the subsequent attack of RNAI by polynucleotide phosphorylase and poly(A)-polymerase were slowed. Among various possible mechanisms for this stabilization, we discuss in particular a passive model. When translation is blocked, rRNA synthesis is known to increase severalfold and rRNA becomes unstable. Meanwhile, the pools of RNase E and polynucleotide phosphorylase, which, in growing cells, are limited because these RNases autoregulate their own synthesis, cannot expand. The processing/degradation of newly synthesized rRNA would then titrate these RNases, causing bulk mRNA stabilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 5A (eIF-5A) is a ubiquitous protein found in all eukaryotic cells. The protein is closely associated with cell proliferation in the G1–S stage of the cell cycle. Recent findings show that the eIF-5A proteins are highly expressed in tumor cells and act as a cofactor of the Rev protein in HIV-1-infected cells. The mature eIF is the only protein known to have the unusual amino acid hypusine, a post-translationally modified lysine. The crystal structure of eIF-5A from Methanococcus jannaschii (MJ eIF-5A) has been determined at 1.9 Å and 1.8 Å resolution in two crystal forms by using the multiple isomorphous replacement method and the multiwavelength anomalous diffraction method for the first crystal form and the molecular replacement method for the second crystal form. The structure consists of two folding domains, one of which is similar to the oligonucleotide-binding domain found in the prokaryotic cold shock protein and the translation initiation factor IF1 despite the absence of any significant sequence similarities. The 12 highly conserved amino acid residues found among eIF-5As include the hypusine site and form a long protruding loop at one end of the elongated molecule.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction of exogenous double-stranded RNA (dsRNA) into Caenorhabditis elegans has been shown to specifically and potently disrupt the activity of genes containing homologous sequences. In this study we present evidence that the primary interference effects of dsRNA are post-transcriptional. First, we examined the primary DNA sequence after dsRNA-mediated interference and found no evidence for alterations. Second, we found that dsRNA-mediated interference with the upstream gene in a polar operon had no effect on the activity of the downstream gene; this finding argues against an effect on initiation or elongation of transcription. Third, we observed by in situ hybridization that dsRNA-mediated interference produced a substantial, although not complete, reduction in accumulation of nascent transcripts in the nucleus, while cytoplasmic accumulation of transcripts was virtually eliminated. These results indicate that the endogenous mRNA is the target for interference and suggest a mechanism that degrades the targeted RNA before translation can occur. This mechanism is not dependent on the SMG system, an mRNA surveillance system in C. elegans responsible for targeting and destroying aberrant messages. We suggest a model of how dsRNA might function in a catalytic mechanism to target homologous mRNAs for degradation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reduction in levels of the potentially toxic amyloid-β peptide (Aβ) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Aβ precursor protein (βAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces βAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in βAPP processing. Phenserine treatment resulted in decreased secretion of soluble βAPP and Aβ into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of βAPP protein expression by phenserine was posttranscriptional as it suppressed βAPP protein expression without altering βAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5′-mRNA leader sequence of βAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Aβ levels by regulating βAPP translation via the recently described iron regulatory element in the 5′-untranslated region of βAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of βAPP expression that can result in a substantial reduction in the level of Aβ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several studies have indicated that degradation of certain mRNAs is tightly coupled to their translation, whereas, in contrast, other observations suggested that translation can be inhibited without changing the stability of the mRNA. We have addressed this question with the use of altered CYC1 alleles, which encode iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. The cyc1-1249 mRNA, which lacks all in-frame and out-of-frame AUG triplets, was as stable as the normal mRNA. This finding established that translation is not required for the degradation of CYC1 mRNAs. Furthermore, poly(G)18 tracks were introduced within the CYC1 mRNA translated regions to block exonuclease degradation. The recovery of 3' fragments revealed that the translatable and the AUG-deficient mRNAs are both degraded 5'-->3'. Also, the increased stability of CYC1 mRNAs in xrn1-delta strains lacking Xrn1p, the major 5'-->3' exonuclease, established that the normal and AUG-deficient mRNAs are degraded by the same pathway. In addition, deadenylylation, which activates the action of Xrn1p, occurred at equivalent rates in both normal and AUG-deficient mRNAs. We conclude that translation is not required for the normal degradation of CYC1 mRNAs, and that translatable and untranslated mRNAs are degraded by the same pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Translational control is a major form of regulating gene expression during gametogenesis and early development in many organisms. We sought to determine whether the translational repression of the protamine 1 (Prm1) mRNA is necessary for normal spermatid differentiation in mice. To accomplish this we generated transgenic animals that carry a Prm1 transgene lacking its normal 3' untranslated region. Premature translation of Prm1 mRNA caused precocious condensation of spermatid nuclear DNA, abnormal head morphogenesis, and incomplete processing of Prm2 protein. Premature accumulation of Prm1 within syncytial spermatids in mice hemizygous for the transgene caused dominant male sterility, which in some cases was accompanied by a complete arrest in spermatid differentiation. These results demonstrate that correct temporal synthesis of Prm1 is necessary for the transition from nucleohistones to nucleoprotamines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GATA-1 is a zinc-finger transcription factor that plays a critical role in the normal development of hematopoietic cell lineages. In human and murine erythroid cells a previously undescribed 40-kDa protein is detected with GATA-1-specific antibodies. We show that the 40-kDa GATA-1 (GATA-1s) is produced by the use of an internal AUG initiation codon in the GATA-1 transcript. The GATA-1 proteins share identical binding activity and form heterodimers in erythroleukemic cells but differ in their transactivation potential and in their expression in developing mouse embryos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research has been funded by the Galician Ministry of Education (Secrctaria Xeral de lnvestigación-PGIDT00PXI20407PR).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article analyzes the solutions given in Spanish translations to the morphological creativity shown in the names of Marvel comic book characters. The English versions almost invariably provide a full description of the hero (or villain) by means of a wide variety of word-formation mechanisms leading to highly expressive charactonyms. Indeed, examples shall be listed of names of comic book heroes created through compounding, derivation, including prefixation or suffixation (both classical and Anglo-Saxon but also from other origins), lexical blending, abbreviation, clipping, onomatopoeia, and borrowings from Spanish or from other languages. Early translations into Spanish seemed to be slightly less expressive than the original, even when the same word-formation mechanism was used, usually due to either problems of transparency mainly in some of the word parts or to translation constraints. In later periods, a number of factors, including the influence from other media featuring the same characters and the general trend towards globalization through English, have led translators to choose repetition as the most frequent strategy, which has almost eliminated the creative power of wordformation mechanisms in Spanish and their ability to convey the stylistic effects found in the English versions.