949 resultados para Cells In-vitro
Resumo:
The purpose of this study was to evaluate in vitro the shear bond strenght to bovine dentin, during 24h and 30 days with the following variables: resin cements Enforce and Panavia F; aesthetics restorative materials Art Glass, IPS Empress 2 and Targis, with surface treatment with microetching with aluminium oxide, fluoridric acid and silane. Two hundred eighty eight sound bovine teeth from 3 years old animals constituted the samples after inclusion on polyester resin box. lnstron model 430 Universal Testing Machine, a crosshead speed 0,5 mm/min and load cells of 500 Kg, was used for shear bond strenght testing (MPa). The results were statistically analysed by ANOVA The best result was obtained with /PS Empress 2, microetched with aluminium oxide, fluoridric acid and silane, cemented with Panavia F and stored in distilled water, 3f'C during 30 days
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Currently, there has been a growing concern for men and women with the appearance of the face and body, driven primarily by aesthetic standards set by the media. For this, the pharmaceutical and cosmetic industries have conducted numerous research projects aiming at the development of formulations that mitigate the aging and some skin disorders such as hipercromies. One of the most frequent pathologies of skin is melasma, a manifestation of hyperpigmentation caused by hipermelanogenesis symmetrical and progressive, caused usually by hormonal irregularities, exposure to sunlight and genetic factors. In addition to sunscreen, the treatment is indicated the use of depigmenting substances, among them the kojic dipalmitate (DK), which is cleaved into kojic acid (5- hydroxy-2-hydroxy-methyl-4H-piran-4-one) by esterase after absorption by the skin cells. The kojic acid inhibits the action of tyrosinase as a chelator of ions and promotes the reduction of eumelanin and its precursor monomer. To promote a controlled release and improve the stability of the system, the DK can be incorporated into multiple emulsions, that is, complex systems composed of two emulsifications, where the two types of emulsions (W/O and O/W or O/W and W/O) exist simultaneously, forming emulsions of type W/O/W or O/W/O. This work aimed to incorporate the DK in emulsion W/O/W, physical-chemical systems obtained and to evaluate the antioxidant and depigmenting action in vitro of the developed formulations. The physico-chemical characterization was performed by microscopic analysis, quantification and size distribution, determination of pH, conductivity, zeta potential and bioadhesive test of the formulations. The droplet size in accordance with the use of light microscopy and dynamic light scattering is approximately 1μm. The pH, electrical conductivity and bioadhesion have not changed with the addition... (Complete abstract click electronic access below)
Resumo:
Experimental models composed by human and animal cell lines are simplified and informative, allowing them to be widely used for biomedical research. Most laboratories that use in vitro cultivated cells maintain a variation of cell lines stored and cultivated. Therefore, misidentification and cross-contamination events can happen during cell lines handling. This problem can generate a repertoire of dubious results and papers, which may prejudice biomedical research. Recently it was created the International Cell Line Authentication Committee (ICLAC), which aims to spread knowledge about cross-contamination and misidentification of in vitro cell lines. Despite of the efforts spent trying to aware scientific community about the importance of the correct identification of cells, the number of papers based on misidentified cell lines it´s still worrying, compromising the reliability of out coming results and conclusions regarding them. The present study aims to analyze and discuss the main advantages and limitations of eukaryote in vitro cell lines use, characterizing the cell lines authentication problems. Therefore, compilation and critical analyses of literature data was realized, aiming to improve the understanding about this subject. Based on information about 445 cell lines with issues published by ICLAC it´s clear that contamination in human cell lines represented 89,2 % of mentioned problems. HeLa cell line was the responsible for most contamination, especially in 92 normal tissue cell lines, representing 44,6% of the contamination. These results reinforce the importance of periodic maintenance of cell lines cultures by labs and implementation of authentication methods as polymorphic STRs, besides obtaining cell lines from reliable sources and cell banks
Resumo:
A monoclonal antibody (mAb) is an important tool in medical biotechnology and the production of biopharmaceuticals, especially for disease diagnosis and treatment of infections, because the antibodies have a significant advantage over chemical agents used in conventional therapies . The last thirty years the technology of production of monoclonal antibodies developed mainly the technique of obtaining in vitro, but also of their production is laborious, the cost is high. A major element of the high cost of production is the fact that the long-term culture consumes a large amount of imported inputs with high added value. A major contribution of this work is to promote cell growth more quickly and efficiently. Currently, a great race to discover new technologies and techniques to synthesize new antibodies and significantly increase the production of murine mAbs. New technologies such as laser and LED are innovations and widespread in modern life, so much so that its use has proliferated worldwide, primarily in the medical field. Recent studies show a series of results from the influence of the LED light in biological tissues such as: increasing the rate of cell proliferation, increased production rate of fibroblasts, increasing the rate of synthesis of RNA and DNA synthesis of ATP, etc. To assess the contribution of the LED in the culture of Myeloma NS1murino compared to the standard procedure. - NS1 cells were provided and followed the criteria of culture medium of the Laboratory of Cellular Engineering Center of Botucatu (POPs). The same amount of cells was grown in bottles of 25 cm2 polystyrene Tissue Culture Treated, specifically marked and kept in special medium RPMI 1640 Gibco BRL supplemented with fetal bovine serum 10%, essential amino acids and non-essential, glucose, insulin and antibiotics. It was used in LEDs Cromatek wavelength of 630nm, 475nm and 530nm. The groups were... (Complete abstract click electronic access below)
Resumo:
Muscular dystrophy refers to a group of more than 30 genetical disorders characterized by progressive weakness and degeneration of the skeletal muscle. No effective therapy is available at present. Recent studies have reported that the transplantation of stem cells can offer an important potential therapy for genetic diseases. Adult bone marrow mesenchymal stem cells have been identified as a nonhematopoietic stem cell population capable of self-renewal with the ability to differentiate into many cell lineages, including bone, fat, cartilage and connective tissue. Because of their similarity with muscle progenitor cells, when they are injected in affected individuals, they are able to migrate into areas of skeletal muscle degeneration and participate in the regeneration process. The adipose tissue represents an alternative source of MSCs that, as the MSCs derived from bone marrow, are capable of in vitro differentiation into osteogenic, adipogenic, myogenic and chondrogenic lineages. The objective of this project is to investigate the “in vitro” myogenic potential of mesenchymal stem cells derived from murine bone marrow and adipose tissue. Four experimental groups were analyzed: mice from lineages Lama2dy-2J/J and C57black and, C2C12 lineage cells and transformed C2C12 expressing the eGFP protein. MSCs cultures were obtained by flushing the bone marrow femurs and tibials with α-MEM or by the subcutaneous and inguinal fat from the mice. Their characterization was done by flow cytometry and in vitro differentiation. Muscle differentiation was studied through the analysis of the expression of transcriptional factors involved in muscle differentiation and/or the presence and amount of specific proteins from muscle differentiated cell. The pluripotency from bone marrow MSCs of the two lineages was evidenced and, in the muscular differentiation... (Complete abstract click electronic access below)
Resumo:
Photodynamic Therapy (PDT) is a therapeutic method which employs a photosensitizer and light to cause cellular death. The chemical compounds have low or none toxicity for hosts cells. Under the incidence of light, in an appropriated wavelength, these chemical compounds produce reactive oxygen which affects the biomolecules of the target-cells. The specific illumination of the affected area increases the selectivity of the therapy, since the photodynamic process occurs only in the irradiated area. Pythiosis, for instance, is a life-threatening emerging disease caused by a fungus-like organism called Pythium insidiosum. The disease occurs in man and other animals, being mostly observed in horses. Human pythiosis may present as ophthalmic, cutaneous-subcutaneous and systemic forms of lesions. Due to the fact that P. insidiosum is not a true fungus, it is refractory to most antifungal drugs and the treatment of the disease is difficult. Extensive surgery procedures, such as limb amputation, are the treatment of choice, however relapses may occur frequently. Although not totally effective, the use of immunotherapy associated to surgery have shown some results. Considering that pythiosis is an emerging disease few explored in its etiological and therapeutic aspects, which are limited and few effective, it is of great importance to encourage the development of researches for new strategies of treatment. In this sense, it was evaluated the effect of PDT on in vitro growth of the pathogen employing two chemical compounds as photosensitizer, porphyrin and chlorine, at different concentrations in combination with several energetic dosages. Porphyrin showed inhibition of growth at 25mg/mL with 100J/cm2 of energetic dosage and chlorine showed similar results employing low concentrations (0,7, 1,0 and 1,3mg/mL) with 70J/cm2 of energetic dosage... (Complete abstract click electronic access below)
Resumo:
Stem cells are defined as cells capable of self-renewal and differentiation into specialized cells when submited to external signalings in the enviroment. Among adult stem cells, mesenchymal cells occupy an important position because they can differentiate into mesodermal cells such as osteoblasts, adipocytes and chondrocytes. Cell therapy consists in the use of mesenchymal stem cells (MSC) in the treatment of degenerative diseases and harmed tissue reconstruction. Due to the longstanding and costly procedure for cultivation of MSC, it was proposed the use of low power light sources, such as light emitting diodes (LED), to optimize these factors. Recent works have shown a series of results from the influence of LED light on biological tissues such as increased rate of cell proliferation, increased RNA, DNA and ATP synthesis rate. The purpose of this study is to compare the biomodulator effect of LED light set at wavelengths 630nm ± 10nm and 805nm ± 10nm on the mesenchymal stem cells proliferation. For this, the mesenchymal stem cells culture adopted the procedure used in the Departament of Animal Reproduction and Veterinary Radiology of the Faculty of Veterinary Medicine and Animal Sciences of Botucatu. MSC were obtained from an adult horse bone marrow, and isolated by density gradient separation, with the FICOLL reagent and by centrifugation. The pellet containing the stem cells was removed and these were placed in low glucose DMEM culture medium, containing 10% fetal calf serum and antibiotics. The material was observed daily by inverted microscopy for monitoring the progression of the cells and subsequently the amount of cells were counted in a Neubauer counting chamber. The amount of MSC was obtained by cell culture seeded in 24 wells culture plate and segregated into three distinct groups: Group 1 was irradiated with wavelength set at 630nm ± 10 nm, Group... (Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,20 -azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA