918 resultados para Cardiomyopathy, hypertrophic
Resumo:
The most frequent form of inherited amyloidoses is associated with mutations in the transthyretin (TTR) gene coding for 127-amino acid residues of four identical, noncovalently linked subunits that form a pair of dimers in the plasma protein complex. Amyloid fibrils containing the variant and to a lesser extent the wild-type form of the TTR molecule are deposited in various organs, including peripheral nerves and the myocardium, with polyneuropathy and cardiomyopathy as major clinical manifestations. So far, more than 40 distinct amino acid substitutions distributed throughout the TTR sequence over 30 positions have been found to be correlated with an increased amyloidogenicity of TTR. Most of these amyloidogenic amino acid substitutions are suspected to alter the conformation and stability of the monomer. Here we identify and characterize by protein and DNA analysis a novel amyloidogenic Val-20 to Ile mutation in a German three-generation family. The index patient suffered from severe amyloid cardiomyopathy at the age of 60. Conformational stability and unfolding behavior of the Ile-20 monomer in urea gradients was found to be almost indistinguishable from that of wild-type TTR. In contrast, tetramer stability was significantly reduced in agreement with the expected change in the interactions between the two opposing dimers via the side chain of Ile-20. Our observations provide strong evidence for the view that amyloidogenic amino acid substitutions in TTR facilitate the conversion of tetrameric TTR complexes into those conformational intermediates of the TTR folding pathway that have an intrinsic amyloidogenic potential.
Resumo:
Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.
Resumo:
Dystrophic cardiac calcinosis, an age-related cardiomyopathy that occurs among certain inbred strains of mice, involves myocardial injury, necrosis, and calcification. Using a complete linkage map approach and quantitative trait locus analysis, we sought to identify genetic loci determining dystrophic cardiac calcinosis in an F2 intercross of resistant C57BL/6J and susceptible C3H/HeJ inbred strains. We identified a single major locus, designated Dyscalc, located on proximal chromosome 7 in a region syntenic with human chromosomes 19q13 and 11p15. The statistical significance of Dyscalc (logarithm of odds score 14.6) was tested by analysis of permuted trait data. Analysis of BxH recombinant inbred strains confirmed the mapping position. The inheritance pattern indicated that this locus influences susceptibility of cells both to enter necrosis and to subsequently undergo calcification.
Resumo:
The association between increased DNA-methyltransferase (DNA-MTase) activity and tumor development suggest a fundamental role for this enzyme in the initiation and progression of cancer. A true functional role for DNA-MTase in the neoplastic process would be further substantiated if the target cells affected by the initiating carcinogen exhibit changes in enzyme activity. This hypothesis was addressed by examining DNA-MTase activity in alveolar type II (target) and Clara (nontarget) cells from A/J and C3H mice that exhibit high and low susceptibility, respectively, for lung tumor formation. Increased DNA-MTase activity was found only in the target alveolar type II cells of the susceptible A/J mouse and caused a marked increase in overall DNA methylation in these cells. Both DNA-MTase and DNA methylation changes were detected 7 days after carcinogen exposure and, thus, were early events in neoplastic evolution. Increased gene expression was also detected by RNA in situ hybridization in hypertrophic alveolar type II cells of carcinogen-treated A/J mice, indicating that elevated levels of expression may be a biomarker for premalignancy. Enzyme activity increased incrementally during lung cancer progression and coincided with increased expression of the DNA-MTase activity are strongly associated with neoplastic development and constitute a key step in carcinogenesis. The detection of premalignant lung disease through increased DNA-MTase expression and the possibility of blocking the deleterious effects of this change with specific inhibitors will offer new intervention strategies for lung cancer.
Resumo:
Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.
Resumo:
Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.
Resumo:
Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Mitochondrial diseases, predominantly mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), may occasionally underlie or coincide with ischemic stroke (IS) in young and middle-aged individuals. We searched for undiagnosed patients with MELAS in a target subpopulation of unselected young IS patients enrolled in the Stroke in Young Fabry Patients study (sifap1). Among the 3291 IS patients aged 18-55 years recruited to the sifap1 study at 47 centers across 14 European countries, we identified potential MELAS patients with the following phenotypic features: (a) diagnosed cardiomyopathy or (b) presence of two of the three following findings: migraine, short stature (≤165 cm for males; ≤155 cm for females), and diabetes. Identified patients' blood samples underwent analysis of the common MELAS mutation, m.3243A>G in the MTTL1 gene of mitochondrial DNA. Clinical and cerebral MRI features of the mutation carriers were reviewed. We analyzed blood samples of 238 patients (177 with cardiomyopathy) leading to identification of four previously unrecognized MELAS main mutation carrier-patients. Their clinical and MRI characteristics were within the expectation for common IS patients except for severe hearing loss in one patient and hyperintensity of the pulvinar thalami on T1-weighted MRI in another one. Genetic testing for the m.3243A>G MELAS mutation in young patients with IS based on phenotypes suggestive of mitochondrial disease identifies previously unrecognized carriers of MELAS main mutation, but does not prove MELAS as the putative cause.
Resumo:
BACKGROUND Ventricular arrhythmias (VAs) from the left ventricular outflow tract (LVOT) region can be inaccessible for ablation because of epicardial fat or overlying coronary arteries. OBJECTIVE We describe surgical cryoablation of this type of VA. METHODS From March 2009 to 2014, 190 consecutive patients with VAs originating from the LVOT underwent ablation at our institution. Four patients (2%) underwent surgical cryoablation for highly symptomatic VAs after failing catheter ablation. RESULTS In all patients, endocardial or percutaneous epicardial mapping was consistent with origin in the LVOT. In 2 patients, the points of earliest activation during VAs were marked with a bipolar pacing lead in the overlying cardiac vein for guidance during surgery. Surgical cryoablation was successful in 3 of the 4 patients. The fourth patient subsequently had successful endocardial catheter ablation. During a mean follow-up of 22 ± 16 months (range 4-42 months), all patients showed abolition of or marked reduction in symptomatic VA. However, 1 patient subsequently required percutaneous intervention to the left anterior descending coronary artery; another developed progressive left ventricular systolic dysfunction caused by nonischemic cardiomyopathy; and a third patient underwent permanent pacemaker implantation because of complete atrioventricular block after concomitant aortic valve replacement. CONCLUSION Surgical cryoablation is an option for highly symptomatic drug-resistant VAs emanating from the LVOT region. Despite extensive preoperative mapping, the procedure is not effective for all patients, and coronary injury is a risk.
Resumo:
PURPOSE OF REVIEW This article summarizes current understanding of the arrhythmia substrate and effect of catheter ablation for infarct-related ventricular tachycardia, focusing on recent findings. RECENT FINDINGS Clinical studies support the use of catheter ablation earlier in the course of ischemic disease with moderate success in reducing arrhythmia recurrence and shocks from implantable defibrillators, although mortality remains unchanged. Ablation can be lifesaving for patients presenting with electrical storm. Advanced mapping systems with image integration facilitate identification of potential substrate, and several different approaches to manage hemodynamically unstable ventricular tachycardia have emerged. Novel ablation techniques that allow deeper lesion formation are in development. SUMMARY Catheter ablation is an important therapeutic option for preventing or reducing episodes of ventricular tachycardia in patients with ischemic cardiomyopathy. Present technologies allow successful ablation in the majority of patients, even when the arrhythmia is hemodynamically unstable. Failure of the procedure is often because of anatomic challenges that will hopefully be addressed with technological progress.
Resumo:
To obtain insight into the natural and/or human-induced changes in the trophic state of the distal portion of the Po River discharge plume over the last two centuries, high temporal resolution dinoflagellate cyst records were established at three sites. Cyst production rates appear to reflect the natural variability in the river's discharge, whereas cyst associations reflect the trophic state of the upper waters, which in turn can be related to agricultural development. The increased abundances of Lingulodinium machaerophorum and Stelladinium stellatum found as early as 1890 and 1920 correspond to the beginning of the industrial revolution in Italy and the first chemical production and dispersion of ammonia throughout Europe. After 1955, the increased abundances of these species and of Polykrikos schwartzii, Brigantedinium spp. and Pentapharsodinium dalei correspond to agriculturally induced alterations of the hypertrophic conditions. A slight improvement in water quality can be observed from 1987 onward.
Resumo:
BACKGROUND Long-term outcomes following ventricular tachycardia (VT) ablation are sparsely described. OBJECTIVES To describe long term prognosis following VT ablation in patients with no structural heart disease (no SHD), ischemic (ICM) and non-ischemic cardiomyopathy (NICM). METHODS Consecutive patients (n=695; no SHD 98, ICM 358, NICM 239 patients) ablated for sustained VT were followed for a median of 6 years. Acute procedural parameters (complete success [non-inducibility of any VT]) and outcomes after multiple procedures were reported. RESULTS Compared with patients with no SHD or NICM, ICM patients were the oldest, had more males, lowest left ventricular ejection fraction (LVEF), highest drug failures, VT storms and number of inducible VTs. Complete procedure success was highest in no SHD, compared ICM and NICM patients (79%, 56%, 60% respectively, P<0.001). At 6 years, ventricular arrhythmia (VA)-free survival was highest in no SHD (77%) than ICM (54%) and NICM (38%, P<0.001) and overall survival was lowest in ICM (48%), followed by NICM (74%) and no SHD patients (100%, P<0.001). Age, LVEF, presence of SHD, acute procedural success (non-inducibility of any VT), major complications, need for non-radiofrequency ablation modalities, and VA recurrence were independently associated with all cause mortality. CONCLUSIONS Long term follow up following VT ablation shows excellent prognosis in the absence of SHD, highest VA recurrence and transplantation in NICM and highest mortality in patients with ICM. The extremely low mortality for those without SHD suggests that VT in this population is very rarely an initial presentation of a myopathic process.