996 resultados para CO2 laser annealing
Resumo:
Keyhole welding, meaning that the laser beam forms a vapour cavity inside the steel, is one of the two types of laser welding processes and currently it is used in few industrial applications. Modern high power solid state lasers are becoming more used generally, but not all process fundamentals and phenomena of the process are well known and understanding of these helps to improve quality of final products. This study concentrates on the process fundamentals and the behaviour of the keyhole welding process by the means of real time high speed x-ray videography. One of the problem areas in laser welding has been mixing of the filler wire into the weld; the phenomena are explained and also one possible solution for this problem is presented in this study. The argument of this thesis is that the keyhole laser welding process has three keyhole modes that behave differently. These modes are trap, cylinder and kaleidoscope. Two of these have sub-modes, in which the keyhole behaves similarly but the molten pool changes behaviour and geometry of the resulting weld is different. X-ray videography was used to visualize the actual keyhole side view profile during the welding process. Several methods were applied to analyse and compile high speed x-ray video data to achieve a clearer image of the keyhole side view. Averaging was used to measure the keyhole side view outline, which was used to reconstruct a 3D-model of the actual keyhole. This 3D-model was taken as basis for calculation of the vapour volume inside of the keyhole for each laser parameter combination and joint geometry. Four different joint geometries were tested, partial penetration bead on plate and I-butt joint and full penetration bead on plate and I-butt joint. The comparison was performed with selected pairs and also compared all combinations together.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
This study is a literature review on laser scribing in monolithically interconnected thin-film PV modules, focusing on efficiency of modules based on absorber materials CIGS, CdTe and a-Si. In thin-film PV module manufacturing scribing is used to interconnect individual cells monolithically by P1, P2 and P3 scribes. Laser scribing has several advantages compared to mechanical scribing for this purpose. However, laser scribing of thin-films can be a challenging process and may induce efficiency reducing defects. Some of these defects can be avoided by improving optimisation or processing methods.
Resumo:
We determined the effects of helium-neon (He-Ne) laser irradiation on wound healing dynamics in mice treated with steroidal and non-steroidal anti-inflammatory agents. Male albino mice, 28-32 g, were randomized into 6 groups of 6 animals each: control (C), He-Ne laser (L), dexamethasone (D), D + L, celecoxib (X), and X + L. D and X were injected im at doses of 5 and 22 mg/kg, respectively, 24 h before the experiment. A 1-cm long surgical wound was made with a scalpel on the abdomens of the mice. Animals from groups L, D + L and X + L were exposed to 4 J (cm²)-1 day-1 of He-Ne laser for 12 s and were sacrificed on days 1, 2, or 3 after the procedure, when skin samples were taken for histological examination. A significant increase of collagen synthesis was observed in group L compared with C (168 ± 20 vs 63 ± 8 mm²). The basal cellularity values on day 1 were: C = 763 ± 47, L = 1116 ± 85, D = 376 ± 24, D + L = 698 ± 31, X = 453 ± 29, X + L = 639 ± 32 U/mm². These data show that application of L increases while D and X decrease the inflammatory cellularity compared with C. They also show that L restores the diminished cellularity induced by the anti-inflammatory drugs. We suggest that He-Ne laser promotes collagen formation and restores the baseline cellularity after pharmacological inhibition, indicating new perspectives for laser therapy aiming to increase the healing process when anti-inflammatory drugs are used.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Climatic changes threaten the planet. Most articles related to the subject present estimates of the disasters expected to occur, but few have proposed ways to deal with the impending menaces. One such threat is the global warming caused by the continuous increase in CO2 emissions leading to rising ocean levels due to the increasing temperatures of the polar regions. This threat is assumed to eventually cause the death of hundreds of millions of people. We propose to desalinize ocean water as a means to reduce the rise of ocean levels and to use this water for populations that need good quality potable water, precisely in the poorest regions of the planet. Technology is available in many countries to provide desalinated water at a justifiable cost considering the lives threatened both in coastal and desertified areas.
Resumo:
This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs), gallium-arsenide laser (GaAs) and Dersani® healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals’ backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4): GaAs laser (4 J/cm²); group 2 (L30): GaAlAs laser (30 J/cm²); group 3 (L60): GaAlAs laser (60 J/cm²); group 4 (D): Dersani® ointment; group 5 (control): 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue). Significant results for wound closing rate were obtained for group 1 (L4), 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 ± 7.10%), which differed from control (29.86 ± 5.15%) on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 ± 2.23%) and group 2 (L30; 2.87 ± 2.40%) differed significantly from control (1.77 ± 2.97%) on the 20th day of the experiment.
Resumo:
The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.
Resumo:
Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia colicells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficientE. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.
Resumo:
Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols.
Resumo:
Este estudo constatou a possibilidade de extrairem-se ácidos graxos livres de óleos vegetais com CO2 supercrítico. Utilizou-se neste trabalho óleos de soja e de castanha do Pará. A pesquisa desenvolveu-se em duas etapas, inicialmente investigou-se a possibilidade de se extrairem os ácidos graxos destes óleos em condições de extração que variaram de 50-140 bar e de 40-80oC durante 40-160 minutos. Concluiu-se que é possível realizar a desacidificação de óleos vegetais. A eficiência da extração foi de aproximadamente 30% a 140 bar e 80oC para ambos os óleos. Após esta primeira etapa, o próximo passo foi a tentativa de obter-se um aumento na eficiência do processo promovendo a pré-degomagem nos óleos brutos como uma etapa anterior ao processo de desacidificação com CO2 supercrítico. A degomagem foi realizada através de dois métodos diferentes, um para extrair as gomas hidratáveis e outro para extrair tanto as hidratáveis como as não-hidratáveis. Os resultados experimentais foram obtidos a 140 bar e 80oC durante 40-160 minutos, mostrando que a pré-degomagem é realmente necessária, pois a eficiência da extração aumentou para 57% para o óleo de soja e 42% para o de castanha do Pará totalmente degomados, sendo que o método escolhido deve extrair tanto as gomas hidratáveis como as não-hidratáveis. Finalmente, utilizou-se cossolvente (etanol a 1-5% do peso do óleo) para auxiliar a extração, observando-se um aumento na eficiência para aproximadamente 65% para o óleo de soja e 56% para o de castanha do Pará totalmente degomados a 140 bar e 80oC por 40-160 minutos.
Resumo:
Residual fibers from palm oil production are a good source of carotene, since they contain more than 5% of the original oil, with about 5000 ppm of carotenoids. As carotenoids are thermosensitive molecules, supercritical CO2 can be used for oil recovery, because this technique employs low temperatures. In this work results of oil extraction experiments from pressed palm oil fibers are shown. Fibers were from AGROPALMA, an industry which is located in Tailândia (Pará, Brazil). Extractions were carried out at 200, 250 and 300 bar and at temperatures of 45 and 55oC. Oil was analyzed by UV/vis spectrophotometry for total carotene determination. Results showed a large increase in extraction rate from 200 to 250 bar and a small variation from 250 to 300 bar. The total amount of carotenes did not increase in the course of extraction at 300 bar, but it showed a large increase at 200 and at 250 bar. Free fatty acids are present in amounts larger than those found in commercial oils.
Resumo:
The effective diffusivity of clove essential oil in subcritical liquid CO2 was estimated. The experimental apparatus employed was a fixed-bed extractor. The fixed bed was formed with grounded (mesh -32 + 65) and compacted clove buds which were considered a solid element. The effective diffusion coefficient was evaluated by fitting the experimental concentration profile to the unsteady state mass balance equation for unidirectional diffusion in a finite solid medium. The diffusion coefficient was related to the concentration of oil in the solid by an exponential function. The estimated values of the effective diffusion coefficient varied from 3.64 to 5.22x10-10 m2/s. The average relative errors were lower than 3.1%.
Resumo:
Dentre as fontes de corantes naturais mais utilizadas na indústria de alimentos, encontra-se a cúrcuma (Curcuma longa L), um rizoma do qual podem ser obtidas substâncias como a curcumina, demetoxicurcumina e bis-demetoxicurcumina. Estes pigmentos possuem coloração amarela e capacidade de substituir corantes artificiais. Com a finalidade de verificar a influência do pré-tratamento de secagem na extração, foram realizados experimentos de extração de oleoresina de cúrcuma com CO2 supercrítico, na unidade de extração do Laboratório de Engenharia Química da Universidade Federal do Pará, submetendo-se a matéria-prima a uma secagem nas temperaturas de 70 e 105oC. As extrações foram feitas a pressões de 200, 250 e 300 bar, e na temperatura de 45oC. Os resultados estão apresentados em tabelas e gráficos, em termos de rendimentos totais e teor de curcumina presente na oleoresina. A secagem a 70oC favoreceu a extração de oleoresina em termos de tempo de extração, e contribuiu para a manutenção de curcumina na matéria-prima.