996 resultados para CARDIAC COMPONENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prospective two dimensional and Doppler echocardiographic study of 70 consecutive patients with systemic lupus erythematosus (SLE) and 40 controls was carried out. Forty patients (57%) were found to have echocardiographic disturbance. Valvular abnormalities were detected in 31 patients (44%) and in only two controls (5%). Mitral valve abnormalities were the most common findings (23/70 (33%)) with mild or moderate regurgitation the most frequent lesion (16% and 9% respectively). Three patients (4%) had a morphological echocardiographic pattern suggestive of non-infective verrucous vegetations affecting the mitral valve. No patient had haemodynamically significant clinical valve disease. Pericardial effusion was identified in 19 patients (27%), of whom 14 had mild and clinically silent disease. Myocardial abnormalities were found in 14 patients (20%), but clinical features of myocardial dysfunction were present in only one. Patients with antiphospholipid antibodies were found to have an increased prevalence of endocardial lesions, mainly valvular regurgitation. It is concluded that the inclusion of echocardiography in a study protocol of patients with SLE can identify an important subset of patients with cardiac abnormalities, many of which are clinically silent. In addition, the association of antiphospholipid antibodies with endocardial lesions suggests that these antibodies may have a prominent role in the pathogenetic mechanisms of heart valve disease in SLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pacemaker implantation (PMI) may predispose to venous thromboembolism (VTE) and obstruction (VO). This prospective study aimed at quantifying changes in venous calibers, and at determining the incidence of symptomatic and asymptomatic VTE/VO after PMI. Further goals included an assessment of the role of transesophageal echocardiography (TEE) in the diagnosis of lead-related central venous thrombi (CVT), and determination of predictors for VTE/VO. Methods: 150 (mean age 67; 61% male) consecutive patients with first PMI were enrolled and followed for 6 months. Contrast venography was performed at baseline and 6 months after PMI to measure venous diameters, and to detect stenosis, total occlusions and thrombi. TEE was conducted in 66 patients. Based on clinical suspicion, work-up for pulmonary embolism (PE) or acute deep vein thrombosis (DVT) were performed as needed. A total of 50 cases underwent longer-term (mean 2.4 years) follow-up venography. All cases with VTE/VO during the initial 6 months, and their matched controls, were selected for a case-control study focused on possible predictive role of laboratory and patient-related factors for the development of VTE/VO. Results: 10 (7 %) patients were found to have baseline venous abnormalities (e.g. 8 obstructions). Mean venous diameters diminished significantly during the first 6 months, but no further reduction occurred in late follow-up. New VO was discovered in 19 patients (14 %; 14 stenosis, 5 total occlusions; all asymptomatic). Small non-obstructive thrombi were found in 20/140 (14 %) 6-month venograms. TEE at 6 months disclosed CVT in 6 (9 %) patients. One (0.7 %) patient had acute symptomatic upper-extremity DVT, and PE was discovered in 5/150 (3.3 %) patients during the first 6 months with no further cases thereafter. At 6 months, the total number of cases with VTE/VO amounted to 47 (31.3 %). Additionally, the later 2-year venograms (n=50) disclosed 4 (8 %) total occlusions and 1 (2 %) stenosis. In the case-control study, no parameter was predictive of venous end-points as a single variable, but there appeared to be significant clustering of traditional VTE risk-factors among the cases. Laboratory parameters showed a definite acute hypercoagulative state induced by PMI, but its degree did not predict subsequent development of VTE/VO. Conclusions: This study shows that VTE/VO is relatively common after PMI with an overall incidence of at least 30 %. Although the majority of the lesions are asymptomatic and clinically benign, cases of PE were also encountered, and totally occluded veins may hamper future upgrading or replacement of pacing system. Venous complications seem difficult to prognosticate as firm predictors were not identified from a wide range of parameters analyzed in this study, although clustering of classic VTE risk factors may be a predisposing factor. Parameters related to implantation procedure or pacing systems and the severity of implantation-induced trauma did not emerge as predictors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine suitability of BimTwin cleaning concept in card board machine to control microbiological activity and describe microbiological balance of the machine. In a review of literature is examined microbe and spore caused problems in paper industry. Biggest problems are deposits, which decrease runnability and cause quality errors. In this chapter is also introduced most common oxidizing biocides used in paper industry and described ATP assay as a microbiological monitoring method. In an experimental part are included BimTwin mill trial results, chemical condition monitoring methods and microbiological balance in a card board machine. In a second part are examined possibilities to effect hygiene of card board by chemical treatment of the surface size and coating. Result showed that BimTwin concept is suitable for card board machine as a cleaning concept, when chemical dosing is fitted right. For proper dosing and secure tolerable hygiene level, chemical and microbiological monitoring is significant. Determining of the microbiological balance would have need more sampling. According to acquired results, broke turned out to be the biggest microbe source. Sizing and coating experiments showed that it is possible to improve hygiene of card board by chemically treated surface size and coating color.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.