984 resultados para Auger electron spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical absorption spectra and transmission electron microscopy (TEM) observations on InGaAs/InP layers under compressive strain are reported. From the band¿gap energy dispersion, the magnitude of the strain inhomogeneities. Is quantified and its microscopic origin is analyzed in view of the layer microstructure. TEM observations reveal a dislocation network at the layer interface the density of which correlates with ¿¿. It is concluded that local variations of dislocation density are responsible for the inhomogeneous strain field together with another mechanism that dominates when the dislocation density is very low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4·5(H2O). The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, electrical measurements show that the breakdown voltage,BVDG, of InP HEMTs increases following exposure to H2. This BVDG shift is nonrecoverable. The increase in BVDG is found to be due to a decrease in the carrier concentration in the extrinsic portion of the device.We provide evidence that H2 reacts with the exposed InAlAs surface in the extrinsic region next to the gate, changing the underlying carrier concentration. Hall measurements of capped and uncapped HEMT samples show that the decrease in sheet carrier concentration can be attributed to a modification of the exposed InAlAs surface. Consistent with this, XPS experiments on uncapped heterostructures give evidence of As loss from the InAlAs surface upon exposure to hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in the emission of Si+ ions from ion-beam-induced oxidized silicon surfaces has been studied. The stoichiometry and the electronic structure of the altered layer has been characterized using x-ray photoelectron spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates the strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30 °. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the corresponding valence-band structures also differ among each other. A comparison between experimental measurements and theoretically calculated Si and SiO2 valence bands indicates that the valence bands for the altered layers are formed by a combination of those two. Since Si-Si bonds are present in the suboxide molecules, the top of the respective new valence bands are formed by the corresponding 3p-3p Si-like subbands, which extend up to the Si Fermi level. The changes in stoichiometry and electronic structure have been correlated with the emission of Si+ ions from these surfaces. From the results a general model for the Si+ ion emission is proposed combining the resonant tunneling and local-bond-breaking models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.