876 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
This paper describes a new system, dubbed Continuous Appearance-based Trajectory Simultaneous Localisation and Mapping (CAT-SLAM), which augments sequential appearance-based place recognition with local metric pose filtering to improve the frequency and reliability of appearance-based loop closure. As in other approaches to appearance-based mapping, loop closure is performed without calculating global feature geometry or performing 3D map construction. Loop-closure filtering uses a probabilistic distribution of possible loop closures along the robot’s previous trajectory, which is represented by a linked list of previously visited locations linked by odometric information. Sequential appearance-based place recognition and local metric pose filtering are evaluated simultaneously using a Rao–Blackwellised particle filter, which weights particles based on appearance matching over sequential frames and the similarity of robot motion along the trajectory. The particle filter explicitly models both the likelihood of revisiting previous locations and exploring new locations. A modified resampling scheme counters particle deprivation and allows loop-closure updates to be performed in constant time for a given environment. We compare the performance of CAT-SLAM with FAB-MAP (a state-of-the-art appearance-only SLAM algorithm) using multiple real-world datasets, demonstrating an increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
In this paper we describe the dynamic simulation of an 18 degrees of freedom hexapod robot with the objective of developing control algorithms for smooth, efficient and robust walking in irregular terrain. This is to be achieved by using force sensors in addition to the conventional joint angle sensors as proprioceptors. The reaction forces on the feet of the robot provide the necessary information on the robots interaction with the terrain. As a first step we validate the simulator by implementing movement control by joint torques using PID controllers. As an unexpected by-product we find that it is simple to achieve robust walking behaviour on even terrain for a hexapod with the help of PID controllers and by specifying a trajectory of only a few joint configurations.
Resumo:
This year marks the completion of data collection for year three (Wave 3) of the CAUSEE study. This report uses data from the first three years and focuses on the process of learning and adaptation in the business creation process. Most start-ups need to change their business model, their product, their marketing plan, their market or something else about the business to be successful. PayPal changed their product at least five times, moving from handheld security, to enterprise apps, to consumer apps, to a digital wallet, to payments between handhelds before finally stumbling on the model that made the a multi-billion dollar company revolving around email-based payments. PayPal is not alone and anecdotes abounds of start-ups changing direction: Sysmantec started as an artificial intelligence company, Apple started selling plans to build computers and Microsoft tried to peddle compilers before licensing an operating system out of New Mexico. To what extent do Australian new ventures change and adapt as their ideas and business develop? As a longitudinal study, CAUSEE was designed specifically to observe development in the venture creation process. In this research briefing paper, we compare development over time of randomly sampled Nascent Firms (NF) and Young Firms(YF), concentrating on the surviving cases. We also compare NFs with YFs at each yearly interval. The 'high potential' over sample is not used in this report.
Resumo:
A wireless sensor network collected real-time water-quality measurements to investigate how current irrigation practices—in particular, underground water salination—affect the environment. New protocols provided high end-to-end packet delivery rates in the hostile deployment environment.
Resumo:
This paper presents the flight trials of an electro-optical (EO) sense-and-avoid system onboard a Cessna host aircraft (camera aircraft). We focus on the autonomous collision avoidance capability of the sense-and-avoid system; that is, closed-loop integration with the onboard aircraft autopilot. We also discuss the system’s approach to target detection and avoidance control, as well as the methodology of the flight trials. The results demonstrate the ability of the sense-and-avoid system to automatically detect potential conflicting aircraft and engage the host Cessna autopilot to perform an avoidance manoeuvre, all without any human intervention
Resumo:
The scheduling of locomotive movements on cane railways has proven to be a very complex task. Various optimisation methods have been used over the years to try and produce an optimised schedule that eliminates or minimises bin supply delays to harvesters and the factory, while minimising the number of locomotives, locomotive shifts and cane bins, and also the cane age. This paper reports on a new attempt to develop an automatic scheduler using a mathematical model solved using mixed integer programming and constraint programming approaches and blocking parallel job shop scheduling fundamentals. The model solution has been explored using conventional constraint programming search techniques and found to produce a reasonable schedule for small-scale problems with up to nine harvesters. While more effort is required to complete the development of the full model with metaheuristic search techniques, the work completed to date gives confidence that the metaheuristic techniques will provide near optimal solutions in reasonable time.
Resumo:
Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
For robots to use language effectively, they need to refer to combinations of existing concepts, as well as concepts that have been directly experienced. In this paper, we introduce the term generative grounding to refer to the establishment of shared meaning for concepts referred to using relational terms. We investigated a spatial domain, which is both experienced and constructed using mobile robots with cognitive maps. The robots, called Lingodroids, established lexicons for locations, distances, and directions through structured conversations called where-are-we, how-far, what-direction, and where-is-there conversations. Distributed concept construction methods were used to create flexible concepts, based on a data structure called a distributed lexicon table. The lexicon was extended from words for locations, termed toponyms, to words for the relational terms of distances and directions. New toponyms were then learned using these relational operators. Effective grounding was tested by using the new toponyms as targets for go-to games, in which the robots independently navigated to named locations. The studies demonstrate how meanings can be extended from grounding in shared physical experiences to grounding in constructed cognitive experiences, giving the robots a language that refers to their direct experiences, and to constructed worlds that are beyond the here-and-now.
Resumo:
In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.
Resumo:
Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.