969 resultados para Aluminium continuous sheet casting
Resumo:
In recognition-based user interface, users’ satisfaction is determined not only by recognition accuracy but also by effort to correct recognition errors. In this paper, we introduce a crossmodal error correction technique, which allows users to correct errors of Chinese handwriting recognition by speech. The focus of the paper is a multimodal fusion algorithm supporting the crossmodal error correction. By fusing handwriting and speech recognition, the algorithm can correct errors in both character extraction and recognition of handwriting. The experimental result indicates that the algorithm is effective and efficient. Moreover, the evaluation also shows the correction technique can help users to correct errors in handwriting recognition more efficiently than the other two error correction techniques.
Resumo:
This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene ( PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous-flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous-flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s(-1), respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented-flow PCR of three samples ( 249, 500 and 982 bp) has also been reported, which demonstrates the present continuous-flow PCR microfluidics can be developed for high-throughput genetic analysis.
Resumo:
The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.
Resumo:
A monolithic structured polymer preform was formed by in-situ chemical polymerization of high-purity MMA monomer in a home-made mould. The conditions for fabrication of the preforms were optimized and the preform was drawn to microstructured polymer optical fibre. The optical properties of the resultant elliptical-core fibre were measured. This technique provides advantages over alternative preform fabrication methods such as drilling and capillary stacking, which are less suitable for mass production. (c) 2006 Optical Society of America.
Resumo:
采用连续模拟降雨试验,对坡沟系统概化模型进行坡面沟蚀发育过程模拟,再现坡面片蚀—细沟侵蚀—切沟侵蚀演变过程。结合3种测量技术从测量精度、测量人员要求、数据处理、数据通用性、配套软件使用、前期投入、测量条件等几个方面入手,对比分析高精度GPS(Trimble 5700)、三维激光扫描仪(Leica HDS 3000)和测针板的3种测量方法的优缺点,同时对3种测量方法在沟蚀过程监测和侵蚀量估算方面进行对比研究。结果表明,激光扫描仪能很好地监测沟蚀演变过程,且对侵蚀量估算精度较高,误差仅为4.5%。高精度GPS也能很好地监测沟蚀演变过程,对侵蚀量估算精度误差为7.38%。测针板法不能很好的反映沟蚀演变过程,但是对于侵蚀量的估算可以满足日常要求,误差为-12.78%。
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
The reduction of exciton binding energy induced by a perpendicular electric field in a stepped quantum well is studied. From continuous-wave photoluminescence spectra at 77 K we have observed an obvious blueshift of the exciton peak due to a spatially direct-to-indirect transition of excitons. A simple method is used to calculate the exciton binding energy while the inhomogeneous broadening is taken into account in a simple manner. The calculated result reproduces remarkably well the experimental observation.
Resumo:
A continuous-time 7th-order Butterworth Gm-C low pass filter (LPF) with on-chip automatic tuning circuit has been implemented for a direct conversion DBS tuner in 0.35μm SiGe BiCMOS technology. The filter's -3 dB cutoff frequency f0 can be tuned from 4 to 40 MHz. A novel on-chip automatic tuning scheme has been successfully realized to tune and lock the filter's cutoff frequency. Measurement results show that the filter has -0.5 dB passband gain, +/- 5% bandwidth accuracy, 30 nV/Hz~(1/2) input referred noise, -3 dBVrms passband IIP3, and 27 dBVrms stopband IIP3. The I/Q LPFs with the tuning circuit draw 13 mA (with f_0 = 20 MHz) from 5 V supply, and occupy 0.5 mm~2.
Resumo:
Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 microns for a 20-micron ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4*10^(10) cm^(-2). The laser keeps lasing at ground state until the temperature reaches 65 Celsius degree.
Resumo:
The necessity of the use of the block and parallel modeling of the nonlinear continuous mappings with NN is firstly expounded quantitatively. Then, a practical approach for the block and parallel modeling of the nonlinear continuous mappings with NN is proposed. Finally, an example indicating that the method raised in this paper can be realized by suitable existed software is given. The results of the experiment of the model discussed on the 3-D Mexican straw hat indicate that the block and parallel modeling based on NN is more precise and faster in computation than the direct ones and it is obviously a concrete example and the development of the large-scale general model established by Tu Xuyan.
Resumo:
Quantum dot lasers are predicted to have proved lasing characteristics compared to quantum well and quantum wire lasers. We report on quantum dot lasers with active media of vertically stacked InAs quantum dots layers grown by molecular beam epitaxy. The laser diodes were fabricated and the threshold current density of 220 A/cm(2) was achieved at room temperature with lasing wavelength of 951 nm. The characteristic temperature To was measured to be 333K and 157K for the temperature range of 40-180K and 180-300K, respectively.