996 resultados para Age Hardening
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Comprendre l'évolution de la bipédie est un élément essentiel à la recherche en paléoanthropologie, car ce comportement est le trait le plus important utilisé pour identifier les fossiles comme appartenant à la lignée des hominines. La topographie de la surface infradiaphysaire du fémur et du tibia pourrait donner un aperçu du comportement locomoteur des espèces fossiles, mais n'a pas été étudiée de façon approfondie. Ce trait reflète directement les différences dans la locomotion, puisque la surface change de topographie pour mieux résister aux charges encourues par les mouvements réguliers. Le plan infradiaphysaire du fémur chez les humain est relativement plat, tandis que la surface est plus irrégulière chez les grands singes. Dans ce projet, les métaphyses du genou ont été étudiées d’une manière quantifiée afin de percevoir les différences entre espèces et mieux comprendre le développement ontogénique de ces traits. Les angles formés par les protrusions et les creux de ces surfaces ont été mesurés à partir de points de repère enregistrés en trois-dimensions sur les métaphyses du genou chez les humains, chimpanzés, gorilles, et orangs-outans, et chez trois fossiles Australopithecus afarensis, afin d’observer de l’effet de facteurs tel le stade de croissance et l’appartenance à une espèce sur la topographie des plaques de croissance du genou. Les angles d’obliquité du fémur et du tibia ont aussi été mesurés et analysés. Les résultats ont révélé que le stade développemental et l’appartenance à une espèce et, par association, le mode de locomotion, ont un effet significatif sur les métaphyses du genou. Il a également été constaté que les mesures d'Australopithecus afarensis chevauchent les valeurs trouvées chez les humains et chez les grands singes, ce qui suggère que cette espèce avait possiblement conservé une composante arboricole dans son comportement locomoteur habituel.
Resumo:
La surveillance de l’influenza s’appuie sur un large spectre de données, dont les données de surveillance syndromique provenant des salles d’urgences. De plus en plus de variables sont enregistrées dans les dossiers électroniques des urgences et mises à la disposition des équipes de surveillance. L’objectif principal de ce mémoire est d’évaluer l’utilité potentielle de l’âge, de la catégorie de triage et de l’orientation au départ de l’urgence pour améliorer la surveillance de la morbidité liée aux cas sévères d’influenza. Les données d’un sous-ensemble des hôpitaux de Montréal ont été utilisées, d’avril 2006 à janvier 2011. Les hospitalisations avec diagnostic de pneumonie ou influenza ont été utilisées comme mesure de la morbidité liée aux cas sévères d’influenza, et ont été modélisées par régression binomiale négative, en tenant compte des tendances séculaires et saisonnières. En comparaison avec les visites avec syndrome d’allure grippale (SAG) totales, les visites avec SAG stratifiées par âge, par catégorie de triage et par orientation de départ ont amélioré le modèle prédictif des hospitalisations avec pneumonie ou influenza. Avant d’intégrer ces variables dans le système de surveillance de Montréal, des étapes additionnelles sont suggérées, incluant l’optimisation de la définition du syndrome d’allure grippale à utiliser, la confirmation de la valeur de ces prédicteurs avec de nouvelles données et l’évaluation de leur utilité pratique.
Resumo:
Article
Resumo:
Objectif: Évaluer la relation entre la fonction cognitive chez les personnes âgées atteintes de dégénérescence maculaire reliée à l’âge (DMLA), de glaucome ou de dystrophie cornéenne de Fuchs et les comparer avec les personnes âgées n’ayant pas de maladie oculaire. Devis: Étude transversale de population hospitalière. Participants: 420 participants (113 avec la DMLA, 66 avec la dystrophie cornéenne de Fuchs, 130 avec le glaucome et 111 témoins). Méthodes: Nous avons recruté les patients à partir de la clinique d’ophtalmologie de l’Hôpital Maisonneuve-Rosemont (Montréal, Canada) de septembre 2009 à septembre 2013. Les patients atteints de la DMLA ou de la maladie de Fuchs ont une acuité visuelle inférieure à 20/40 dans les deux yeux, tandis que les patients avec du glaucome ont un champ visuel dans le pire œil inférieur ou égal à -4dB. Les patients contrôles, qui ont été recrutés à partir des mêmes cliniques, ont une acuité visuelle et un champ visuel normaux. Nous avons colligé des données concernant la fonction cognitive à partir du test Mini-Mental State Exam (MMSE)-version aveugle. Pour mesurer la fonction visuelle, nous avons mesuré l’acuité visuelle, la sensibilité au contraste et le champ visuel. Nous avons également révisé le dossier médical. Pour les analyses statistiques, nous avons utilisé la régression linéaire. Critère de jugement principal: MMSE-version aveugle. Résultats: Les trois maladies oculaires ont été associées à une limitation de la cognition. Le score de MMSE-version aveugle se situe de 0.7 à 0.8 unités plus basses par rapport au groupe contrôle. Comparativement aux contrôles, les patients avec maladies oculaires ont eu un score moyen diminué (P < 0.05). Le niveau d’éducation élevé est associé à une meilleure cognition (P < 0.001). Conclusions: Nos résultats suggèrent que les maladies oculaires sont associées à une diminution de la fonction cognitive chez les personnes âgées. De futures études sont nécessaires pour évaluer l’impact des maladies oculaires sur le déclin cognitif chez cette population pour pouvoir envisager des interventions ciblées qui pourraient les aider à maintenir leur indépendance le plus longtemps possible.
Resumo:
Acid and alkaline DNase activities in partially purified preparations from young and old chick brain were measured. The specific activity of acid DNase from old brain was lower by about 50% than that of enzyme from young brain , whereas alkaline DNase exhibited only marginal difference in activity of the two preparations . Study of various properties, viz. heat-stability and effect of exogenous compounds like Mg=', Hgl', Zn=', PHM B , on these enzymes revealed that while acid DNase in old brain is more susceptible to heat and heavy metal ion inhibition , alkaline DNase is devoid of any age-dependent variation in its properties.
Resumo:
Kinetic parameters of brain glutamate dehydrogenase (GDH) were compared in the brain stem, cerebellum and cerebral cortex of three weeks and one year old streptozotocin (STZ) induced four day diabetic rats with respective controls. A single intrafemoral dose of STZ (60mg/Kg body weight) was administered to induce diabetes in both age groups. After four days the blood glucose levels showed a significant increase in the diabetic animals of both age groups compared with the respective controls. The increase in blood glucose was significant in one year old compared to the three weeks old diabetic rats. The Vmm of the enzyme was decreased in all the brain regions studied, of the three weeks old diabetic rats without any significant change in the Km. In the adult the Vmax of GDH was increased in cerebellum and brain stem but was unchanged in the cerebral cortex. The K. was unchanged in cerebellum and cerebral cortex but was increased in the brain stem. These results suggest there may be an important regulatory role of the glutamate pathway in brain neural network disturbances and neuronal degeneration in diabetes as a function of age.
Age-related and sex-related alterations in f3-adrenergic receptors in different regions of rat brain
Resumo:
The binding of (-)[ 3H ]dihydroalprenolol , an antagonist of norepinephrine , to $-adrenergic receptors in different regions of the brain of male and female rats of various ages was measured . The binding to the synaptosomal fraction of corpus striatum , hypothalamus, cerebral cortex, cerebellum and the brainstems shows a significant decrease in the binding in old rats of both sexes . Only in the female corpus striatal region, the binding in the adult and the old is the same . In the case of females, the highest binding is seen in the young. In the male, an increase in binding occurs up to adulthood , after which it declines, suggesting a definite sex-related difference in the Q-adrenergic receptor.
Resumo:
A non-invasive technique is implemented to measure a parameter which is closely related to the distensibility of large arteries, using the second derivative of the infrared photoplethysmographic waveform. Thirty subjects within the age group of 20-61 years were involved in this pilot study. Two new parameters, namely the area of the photoplethysmographic waveform under the systolic peak, and the ratio of the time delay between the systolic and the diastolic peaks and the time period of the waveform ( T/T) were studied as a function of age. It was found that while the parameter which is supposed to be a marker of distensibility of large arteries and T /T values correlate negatively with age, the area under the systolic peak correlates positively with age. The results suggest that the derived parameters could provide a simple, non-invasive means for studying the changes in the elastic properties of the vascular system as a function of age.
Resumo:
The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
I) To study the changes in the content of brain rrrorroamirres in streptozotocirr-irrduced tliabetes as a lirnction of age and to lirrd the role oliadrenal lrornroncs in diabetic state. 2) To assess the adrenergic receptor function in the brain stem ofstreptozotocin-induced diabetic rats ofdillerent ages. 3) To study the changes in the basal levels of second messenger cAMP in the brain stenr ofstreptozotocin-induced diabetic rats as a function of age. 4) To study the changes occurring in the content ofmorroamines and their metabolites in whole pancreas and isolated pancreatic islets of streptozotocin-diabetic rats as a function ofage and the effect of adrenal hormones. 5) To study the adrenergic receptors and basal levels of cAMP in isolated pancreatic islets in young and old streptozotoein-diabetic rats. 6) The in virro study of CAMP content in pancreatic islets of young and old rats and its ellect on glucose induced insulin secretion. 7) 'lhe in vitro study on the involvement of dopamine and corticosteroids in glucose induced insulin secretion in pancreatic islets as a function of age.
Resumo:
This paper highlights the prediction of learning disabilities (LD) in school-age children using rough set theory (RST) with an emphasis on application of data mining. In rough sets, data analysis start from a data table called an information system, which contains data about objects of interest, characterized in terms of attributes. These attributes consist of the properties of learning disabilities. By finding the relationship between these attributes, the redundant attributes can be eliminated and core attributes determined. Also, rule mining is performed in rough sets using the algorithm LEM1. The prediction of LD is accurately done by using Rosetta, the rough set tool kit for analysis of data. The result obtained from this study is compared with the output of a similar study conducted by us using Support Vector Machine (SVM) with Sequential Minimal Optimisation (SMO) algorithm. It is found that, using the concepts of reduct and global covering, we can easily predict the learning disabilities in children
Resumo:
This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.