987 resultados para African Institute for Mathematical Sciences
Resumo:
In the last two decades there has been a plethora of research on a range of subjects collectively and rhetorically known as ‘work-life balance’. The bulk of this research, which spans disciplines including feminist sociology, industrial relations and management, has focused on the significant concerns of employed women and/or dual career couples. Less attention has been devoted to scholarship which explicitly examines men and masculinities in this context. Meanwhile, public and organizational discourse is largely espoused in gender neutral terms, often neglecting salient gendered issues which differentially impact the ability of women and men to successfully integrate their work and non-work lives. This edited book brings together empirical studies of the work-life nexus with a specific focus on men’s working time arrangements, how men navigate and traverse paid work and family commitments, and the impact of public and organizational policies on men’s participation in work, leisure, and other life domains. The book is innovative in that it presents both macro (institutional, how policy affects practice) and micro (individual, from men’s own perspectives) level studies, allowing for a rich and contrasting exploration of how men’s participation in paid work and other domains is divided, conflicted, or integrated. The essays in this volume address issues of fundamental social, labor market, and economic change which have occurred over the last 20 years and which have profoundly affected the way work, care, leisure and community have evolved in different contexts. Taking an international focus, Men, Wage Work and Family contrasts various public and organizational policies and how these policies impact men’s opportunities and participation in paid work and non-work domains in industrialised countries in Europe, North America, and Australia.
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
In this paper, a class of fractional advection-dispersion models (FADM) is investigated. These models include five fractional advection-dispersion models: the immobile, mobile/immobile time FADM with a temporal fractional derivative 0 < γ < 1, the space FADM with skewness, both the time and space FADM and the time fractional advection-diffusion-wave model with damping with index 1 < γ < 2. They describe nonlocal dependence on either time or space, or both, to explain the development of anomalous dispersion. These equations can be used to simulate regional-scale anomalous dispersion with heavy tails, for example, the solute transport in watershed catchments and rivers. We propose computationally effective implicit numerical methods for these FADM. The stability and convergence of the implicit numerical methods are analyzed and compared systematically. Finally, some results are given to demonstrate the effectiveness of our theoretical analysis.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.
Resumo:
This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.
Resumo:
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.
Resumo:
This paper develops and evaluates an enhanced corpus based approach for semantic processing. Corpus based models that build representations of words directly from text do not require pre-existing linguistic knowledge, and have demonstrated psychologically relevant performance on a number of cognitive tasks. However, they have been criticised in the past for not incorporating sufficient structural information. Using ideas underpinning recent attempts to overcome this weakness, we develop an enhanced tensor encoding model to build representations of word meaning for semantic processing. Our enhanced model demonstrates superior performance when compared to a robust baseline model on a number of semantic processing tasks.
Resumo:
The use of containers have greatly reduced handling operations at ports and at all other transfer points, thus increasing the efficiency and speed of transportation. This was done in an attempt to cut down the cost of maritime transport, mainly by reducing cargo handling and costs, and ships' time in port by speeding up handling operations. This paper discusses the major factors influencing the transfer efficiency of seaport container terminals. A network model is designed to analyse container progress in the system and applied to a seaport container terminal. The model presented here can be seen as a decision support system in the context of investment appraisal of multimodal container terminals. (C) 2000 Elsevier Science Ltd.
Resumo:
Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.