924 resultados para Activity Based Probe (ABP)
Resumo:
BACKGROUND: Recent neuroimaging studies suggest that value-based decision-making may rely on mechanisms of evidence accumulation. However no studies have explicitly investigated the time when single decisions are taken based on such an accumulation process. NEW METHOD: Here, we outline a novel electroencephalography (EEG) decoding technique which is based on accumulating the probability of appearance of prototypical voltage topographies and can be used for predicting subjects' decisions. We use this approach for studying the time-course of single decisions, during a task where subjects were asked to compare reward vs. loss points for accepting or rejecting offers. RESULTS: We show that based on this new method, we can accurately decode decisions for the majority of the subjects. The typical time-period for accurate decoding was modulated by task difficulty on a trial-by-trial basis. Typical latencies of when decisions are made were detected at ∼500ms for 'easy' vs. ∼700ms for 'hard' decisions, well before subjects' response (∼340ms). Importantly, this decision time correlated with the drift rates of a diffusion model, evaluated independently at the behavioral level. COMPARISON WITH EXISTING METHOD(S): We compare the performance of our algorithm with logistic regression and support vector machine and show that we obtain significant results for a higher number of subjects than with these two approaches. We also carry out analyses at the average event-related potential level, for comparison with previous studies on decision-making. CONCLUSIONS: We present a novel approach for studying the timing of value-based decision-making, by accumulating patterns of topographic EEG activity at single-trial level.
Resumo:
Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow burrows, following disturbance, could increase the daily energy expenditure by >10%, depending principally on ambient temperature and duration of exposure. This study confirms the predictions of allostatic theory and, to the best of our knowledge, constitutes the first demonstration of a funneling effect. It further establishes that winter recreation activities incur costly allostatic behavioral and energetic adjustments, which call for the creation of winter refuge areas together with the implementation of visitor-steering measures for sensitive wildlife.
Resumo:
La formación en Derecho ha sido tradicionalmente una formación que puede orientarse y resolverse en un abanico de posibilidades profesionales muy elevado. Sin embargo esta amplitud y diversidad de referentes profesionales no ha sido históricamente asumido por el modelo de formación general seguido por las universidades españolas, centralizado y orientado a un aprendizaje fundamentalmente memorístico de los contenidos a los que se somete a un tratamiento muy dogmático. No obstante existen enfoques estratégicos distintos, de calidad y contrastados, para la formación profesional en Derecho. Entre ellos, destaca el enfoque conocido como el Aprendizaje Basado en Problemas (ABP). En este artículo se analizan los referentes que aportan sentido y valor a esta opción estratégica, se validan en datos empíricos las opiniones de los estudiantes y se analizan aquellos aspectos susceptibles de atención en su implementación y desarrollo en las aulas. Los estudiantes consideran que adquieren conocimientos y competencias que les ayudarán en la práctica profesional futura, valorando positivamente el reforzamiento de su autonomía, la interacción con los compañeros y con el profesor y el poder disponer de una"orientación hacia la acción" más o menos clara.
Resumo:
Twenty Audouin´s gulls, Larus audouinii, breeding in the Ebro Delta (NW Mediterranean) were radio-tracked in 1998 to study their foraging behaviour and activity patterns. Some detrimental effects of tagging on the breeding success of the birds were detected, especially when both members of the pair were tagged. The results were actually constrained by the low number of locations due to natural breeding failure and failure in tag emission, as well as the adverse effect of tagging. However, through a combination of aircraft surveys at sea and a fixed station for automatic tracking of the presence of the birds at the colony, novel individual-based information of home ranges and activity patterns was obtained. Trawler fishing activity seemed to influence both the foraging range and habitat use: while trawlers operated, gulls overlapped their fishing grounds with vessels, probably to scavenge on discards. Very few locations were obtained during a trawling moratorium period, although they were all recorded in coastal bays and terrestrial habitats. During the trawling activity period, gulls ranged over a minimum convex polygon area of 2900 km2. Gulls were tracked up to 40 km from the colony, but some individuals were observed beyond 150 km while still breeding. Arrivals and departures from the colony were in accordance with the trawling timetable. However, most birds also showed some nocturnal foraging activity, probably linked to active fishing of clupeoids (following diel migrations) or to the exploitation of purse-seine fishing activity. Foraging trips lasted on average 15 hours: males performed significantly shorter trips than females, which spent more time outside the colony. The proportion of nocturnal time involved in the foraging trips was the same for males and females, but whilst all males initiated their trips both during the day and at night, some females only initiated their trips during the day. Hatching success was found to be related to foraging effort by males. Gulls spent on average ca. 38% of their time budget outside the nesting territory, representing the time devoted mainly to flying, foraging and other activities.
Resumo:
The members of the epidermal growth factor (EGF)/ErbB family are prime targets for cancer therapy. However, the therapeutic efficiency of the existing anti-ErbB agents is limited. Thus, identifying new molecules that inactivate the ErbB receptors through novel strategies is an important goal on cancer research. In this study we have developed a shorter form of human EGF (EGFt) with a truncated C-terminal as a novel EGFR inhibitor. EGFt was designed based on the superimposition of the three-dimensional structures of EGF and the Potato Carboxypeptidase Inhibitor (PCI), an EGFR blocker previously described by our group. The peptide was produced in E. coli with a high yield of the correctly folded peptide. EGFt showed specificity and high affinity for EGFR but induced poor EGFR homodimerization and phosphorylation. Interestingly, EGFt promoted EGFR internalization and translocation to the cell nucleus although it did not stimulate the cell growth. In addition, EGFt competed with EGFR native ligands, inhibiting the proliferation of cancer cells. These data indicate that EGFt may be a potential EGFR blocker for cancer therapy. In addition, the lack of EGFR-mediated growth-stimulatory activity makes EGFt an excellent delivery agent to target toxins to tumours over-expressing EGFR.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of Nε- and Nα-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
Background: There is growing evidence suggesting that prolonged sitting has negative effects on people's weight, chronic diseases and mortality. Interventions to reduce sedentary time can be an effective strategy to increase daily energy expenditure. The purpose of this study is to evaluate the effectiveness of a six-month primary care intervention to reduce daily of sitting time in overweight and mild obese sedentary patients. Method/Design: The study is a randomized controlled trial (RCT). Professionals from thirteen primary health care centers (PHC) will randomly invite to participate mild obese or overweight patients of both gender, aged between 25 and 65 years old, who spend 6 hours at least daily sitting. A total of 232 subjects will be randomly allocated to an intervention (IG) and control group (CG) (116 individuals each group). In addition, 50 subjects with fibromyalgia will be included. Primary outcome is: (1) sitting time using the activPAL device and the Marshall questionnaire. The following parameters will be also assessed: (2) sitting time in work place (Occupational Sitting and Physical Activity Questionnaire), (3) health-related quality of life (EQ-5D), (4) evolution of stage of change (Prochaska and DiClemente's Stages of Change Model), (5) physical inactivity (catalan version of Brief Physical Activity Assessment Tool), (6) number of steps walked (pedometer and activPAL), (7) control based on analysis (triglycerides, total cholesterol, HDL, LDL, glycemia and, glycated haemoglobin in diabetic patients) and (8) blood pressure and anthropometric variables. All parameters will be assessed pre and post intervention and there will be a follow up three, six and twelve months after the intervention. A descriptive analysis of all variables and a multivariate analysis to assess differences among groups will be undertaken. Multivariate analysis will be carried out to assess time changes of dependent variables. All the analysis will be done under the intention to treat principle. Discussion: If the SEDESTACTIV intervention shows its effectiveness in reducing sitting time, health professionals would have a low-cost intervention tool for sedentary overweight and obese patients management.
Resumo:
In this paper we explore the use of non-linear transformations in order to improve the performance of an entropy based voice activity detector (VAD). The idea of using a non-linear transformation comes from some previous work done in speech linear prediction (LPC) field based in source separation techniques, where the score function was added into the classical equations in order to take into account the real distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if signal is clean, estimated entropy is essentially the same; but if signal is noisy transformed frames (with score function) are able to give different entropy if the frame is voiced against unvoiced ones. Experimental results show that this fact permits to detect voice activity under high noise, where simple entropy method fails.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro assays to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. The nanovesicles were characterized in both water and cell culture medium. In general, significant agglomeration occurred after 24 h incubation under cell culture conditions. We found different cytotoxic responses among the formulations, which depended on the surfactant,cell line (3T3, HaCaT, and THP-1) and endpoint assayed (MTT, NRU, and LDH). Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas only a slight inflammatory response was induced, as detected by IL-1a and IL-8 production in HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic charge position and the alkyl chain length of the surfactants determine the nanovesicles resulting toxicity. The charge on the a-amino group of lysine increased the depletion of cell metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to enhance the toxic responses of the nanovesicles. The insights provided here using different cell lines and assays offer a comprehensive toxicological evaluation of this group of new nanomaterials.
Resumo:
BACKGROUND: Variations in physical activity (PA) across nations may be driven by socioeconomic position. As national incomes increase, car ownership becomes within reach of more individuals. This report characterizes associations between car ownership and PA in African-origin populations across 5 sites at different levels of economic development and with different transportation infrastructures: US, Seychelles, Jamaica, South Africa, and Ghana. METHODS: Twenty-five hundred adults, ages 25-45, were enrolled in the study. A total of 2,101 subjects had valid accelerometer-based PA measures (reported as average daily duration of moderate to vigorous PA, MVPA) and complete socioeconomic information. Our primary exposure of interest was whether the household owned a car. We adjusted for socioeconomic position using household income and ownership of common goods. RESULTS: Overall, PA levels did not vary largely between sites, with highest levels in South Africa, lowest in the US. Across all sites, greater PA was consistently associated with male gender, fewer years of education, manual occupations, lower income, and owning fewer material goods. We found heterogeneity across sites in car ownership: after adjustment for confounders, car owners in the US had 24.3 fewer minutes of MVPA compared to non-car owners in the US (20.7 vs. 45.1 minutes/day of MVPA); in the non-US sites, car-owners had an average of 9.7 fewer minutes of MVPA than non-car owners (24.9 vs. 34.6 minutes/day of MVPA). CONCLUSIONS: PA levels are similar across all study sites except Jamaica, despite very different levels of socioeconomic development. Not owning a car in the US is associated with especially high levels of MVPA. As car ownership becomes prevalent in the developing world, strategies to promote alternative forms of active transit may become important.
Resumo:
Innovation is the word of this decade. According to innovation definitions, without positive sales impact and meaningful market share the company’s product or service has not been an innovation. Research problem of this master thesis is to find out what is the innovation process of complex new consumer products and services in new innovation paradigm. The objective is to get answers to two research questions: 1) What are the critical success factors what company should do when it is implementing the paradigm change in mass markets consumer business with complex products and services? 2) What is the process or framework one firm could follow? The research problem is looked from one company’s innovation creation process, networking and organization change management challenges point of views. Special focus is to look the research problem from an existing company perspective which is entering new business area. Innovation process management framework of complex new consumer products and services in new innovation paradigm has been created with support of several existing innovation theories. The new process framework includes the critical innovation process elements companies should take into consideration in their daily activities when they are in their new business innovation implementing process. Case company location based business implementation activities are studied via the new innovation process framework. This case study showed how important it is to manage the process, look how the target market and the competition in it is developing during company’s own innovation process, make decisions at right time and from beginning plan and implement the organization change management as one activity in the innovation process. In the end this master thesis showed that all companies need to create their own innovation process master plan with milestones and activities. One plan does not fit all, but all companies can start their planning from the new innovation process what was introduced in this master thesis.
Resumo:
Adolescence is an important time for acquiring high peak bone mass. Physical activity is known to be beneficial to bone development. The effect of estrogen-progestin contraceptives (EPC) is still controversial. Altogether 142 (52 gymnasts, 46 runners, and 42 controls) adolescent women participated in this study, which is based on two 7-year (n =142), one 6-year (n =140) and one 4-year (n =122) follow-ups. Information on physical activity, menstrual history, sexual maturation, nutrition, living habits and health status was obtained through questionnaires and interviews. The bone mineral density (BMD) and content (BMC) of lumbar spine (LS) and femoral neck (FN) were measured by dual- energy X-ray absoptiometry. Calcaneal sonographic measurements were also made. The physical activity of the athletes participating in this study decreased after 3-year follow-up. High-impact exercise was beneficial to bones. LS and FN BMC was higher in gymnasts than in controls during the follow-up. Reduction in physical activity had negative effects on bone mass. LS and FN BMC increased less in the group having reduced their physical activity more than 50%, compared with those continuing at the previous level (1.69 g, p=0.021; 0.14 g, p=0.015, respectively). The amount of physical activity was the only significant parameter accounting for the calcaneal sonography measurements at 6-year follow-up (11.3%) and reduced activity level was associated with lower sonographic values. Long-term low-dose EPC use seemed to prevent normal bone mass acquisition. There was a significant trend towards a smaller increase in LS and FN BMC among long-term EPC users. In conclusion, this study confirms that high-impact exercise is beneficial to bones and that the benefits are partly maintained even after a clear reduction in training level at least for 4 years. Continued exercise is needed to retain all acquired benefits. The bone mass gained and maintained can possibly be maximized in adolescence by implementing high-impact exercise for youngsters. The peak bone mass of the young women participating in the study may be reached before the age of 20. Use of low-dose EPCs seems to suppress normal bone mass acquisition.
Resumo:
Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8(+) T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, K D = ∼1 - 5 μM. Beyond the affinity threshold at K D < 1 μM we observed an attenuation in cellular function, in line with the "half-life" model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Occupational hygiene practitioners typically assess the risk posed by occupational exposure by comparing exposure measurements to regulatory occupational exposure limits (OELs). In most jurisdictions, OELs are only available for exposure by the inhalation pathway. Skin notations are used to indicate substances for which dermal exposure may lead to health effects. However, these notations are either present or absent and provide no indication of acceptable levels of exposure. Furthermore, the methodology and framework for assigning skin notation differ widely across jurisdictions resulting in inconsistencies in the substances that carry notations. The UPERCUT tool was developed in response to these limitations. It helps occupational health stakeholders to assess the hazard associated with dermal exposure to chemicals. UPERCUT integrates dermal quantitative structure-activity relationships (QSARs) and toxicological data to provide users with a skin hazard index called the dermal hazard ratio (DHR) for the substance and scenario of interest. The DHR is the ratio between the estimated 'received' dose and the 'acceptable' dose. The 'received' dose is estimated using physico-chemical data and information on the exposure scenario provided by the user (body parts exposure and exposure duration), and the 'acceptable' dose is estimated using inhalation OELs and toxicological data. The uncertainty surrounding the DHR is estimated with Monte Carlo simulation. Additional information on the selected substances includes intrinsic skin permeation potential of the substance and the existence of skin notations. UPERCUT is the only available tool that estimates the absorbed dose and compares this to an acceptable dose. In the absence of dermal OELs it provides a systematic and simple approach for screening dermal exposure scenarios for 1686 substances.