984 resultados para 240201 Theoretical Physics
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
Gaussian-beam-type solutions to the Maxwell equations are constructed by using results from relativistic front analysis, and the propagation characteristics of these beams are analyzed. The rays of geometrical optics are shown to be the trajectories of energy flow, as given by the Poynting vector. The longitudinal components of the field vectors in the direction of the beam axis, though small, are shown to be essential for a consistent description.
Resumo:
The use of the photoacoustic effect in the investigation of first- and second-order phase transitions has been examined. Changes in the amplitude of the photoacoustic signal across the phase transition are compared with changes in thermal properties such as specific heat and thermal diffusivity. The systemsstudied include NaN02, TlN03, CsN03, NH4N03, BaTiO,, COO, Cu,HgI,, V02 andV305. The current photoacoustic studies are discussed in the light of the theoretical models available.
Resumo:
The appearance of spinning side bands in the 2H NMR spectra of oriented molecules is investigated. A theoretical interpretation of the side-band intensities is carried out. Information derived on the director orientation and distribution as a function of spinning speedis reported.
Resumo:
It is shown, in the composite fermion models studied by 't Hooft and others, that the requirements of Adler-Bell-Jackiw anomaly matching and n-independence are sufficient to fix the indices of composite representations. The third requirement, namely that of decoupling relations, follows from these two constraints in such models and hence is inessential.
Resumo:
The probable modes of binding of Methyl--alpha (and beta)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that beta-MeGlcP can bind to ConA in three different modes whereas alpha-MeGlcP can bind only in one mode. beta-MeGlcP in its most favourable mode of binding differs from alpha-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the alpha-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-alpha-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-alpha-D-glycopyranoside. These studies suggest that the increased activity of the alpha-MeGlcP over beta-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.
Resumo:
Polytypes have been simulated, treating them as analogues of a one-dimensional spin-half Ising chain with competing short-range and infinite-range interactions. Short-range interactions are treated as random variables to approximate conditions of growth from melt as well as from vapour. Besides ordered polytypes up to 12R, short stretches of long-period polytypes (up to 33R) have been observed. Such long-period sequences could be of significance in the context of Frank's theory of polytypism. The form of short-range interactions employed in the study has been justified by carrying out model potential calculations.
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
We report a theoretical formulation for the mean cluster size distribution in a finite polycondensing system. Expressions for the mean number of n-mers with j bonds ( nj) are developed. Numerical calculations show that while the non-cyclic molecules make the dominant contribution to the small clusters, the large clusters are dominated by cyclic structures. The number of particles in ringless chains, n n,n-1, decays monotonically with n at all extents of reaction, but n n becomes bimodal near the gel point. We also find that the solvent plays an important role in the cluster size distribution.
Resumo:
This paper describes the experimental and theoretical studies carried out on particulate composites consisting of BaTiO3, graphite, and rubber. It is shown that such composites exhibit a positive voltage coefficient of resistance beyond a certain voltage. A theoretical model developed to explain the observed V-R characteristics and their dependence on parameters of the composite like composition and grain size of the particles is also described. These composites seem to be useful as varistors with positive voltage coefficient of resistance and may find applications as voltage-regulating devices. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The energy, position, and momentum eigenstates of a para-Bose oscillator system were considered in paper I. Here we consider the Bargmann or the analytic function description of the para-Bose system. This brings in, in a natural way, the coherent states ||z;alpha> defined as the eigenstates of the annihilation operator ?. The transformation functions relating this description to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of the identity operator using coherent states is examined. A particular resolution contains two integrals, one containing the diagonal basis ||z;alpha>
Resumo:
The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.