983 resultados para 138-853
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Resumo:
TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) is a sea surface temperature (SST) proxy based on the distribution of archaeal isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs). In this study, we appraise the applicability of TEX86 and TEX86L in subpolar and polar regions using surface sediments. We present TEX86 and TEX86L data from 160 surface sediment samples collected in the Arctic, the Southern Ocean and the North Pacific. Most of the SST estimates derived from both TEX86 and TEX86L are anomalously high in the Arctic, especially in the vicinity of Siberian river mouths and the sea ice margin, plausibly due to additional archaeal contributions linked to terrigenous input. We found unusual GDGT distributions at five sites in the North Pacific. High GDGT-0/crenarchaeol and GDGT-2/crenarchaeol ratios at these sites suggest a substantial contribution of methanogenic and/or methanotrophic archaea to the sedimentary GDGT pool here. Apart from these anomalous findings, TEX86 and TEX86L values in the surface sediments from the Southern Ocean and the North Pacific do usually vary with overlaying SSTs. In these regions, the sedimentary TEX86-SST relationship is similar to the global calibration, and the derived temperature estimates agree well with overlaying annual mean SSTs at the sites. However, there is a systematic offset between the regional TEX86L-SST relationships and the global calibration. At these sites, temperature estimates based on the global TEX86L calibration are closer to summer SSTs than annual mean SSTs. This finding suggests that in these subpolar settings a regional TEX86L calibration may be a more suitable equation for temperature reconstruction than the global calibration.
Resumo:
Export production is an important component of the carbon cycle, modulating the climate system by transferring CO2 from the atmosphere to the deep ocean via the biological pump. Here we use barite accumulation rates to reconstruct export production in the eastern equatorial Pacific over the past 4.3 Ma. We find that export production fluctuated considerably on multiple time scales. Export production was on average higher (51 g C/m**2/yr) during the Pliocene than the Pleistocene (40 g C/m**2/yr), decreasing between 3 and 1 Ma (from more than 60 to 20 g C/m**2/yr) followed by an increase over the last million years. These trends likely reflect basin-scale changes in nutrient inventory and ocean circulation. Our record reveals decoupling between export production and temperatures on these long (million years) time scale. On orbital time scales, export production was generally higher during cold periods (glacial maxima) between 4.3 and 1.1 Ma. This could be due to stronger wind stress and higher upwelling rates during glacial periods. A shift in the timing of maximum export production to deglaciations is seen in the last ~1.1 million years. Results from this study suggest that, in the eastern equatorial Pacific, mechanisms that affect nutrient supply and/or ecosystem structure and in turn carbon export on orbital time scales differ from those operating on longer time scales and that processes linking export production and climate-modulated oceanic conditions changed about 1.1 million years ago. These observations should be accounted for in climate models to ensure better predictions of future climate change.