939 resultados para 091206 Glass
Resumo:
In his assessment of the EU proposal on banking structural reform, unveiled on January 29th, Karel Lannoo observes that the Commission must perform a delicate balancing act between preserving the single market and at the same time accommodating existing EU measures covering resolution and trading activities.
Resumo:
In May 2013, the European Commission received a mandate from the European Council to “to present an analysis of the composition and drivers of energy prices and costs in Member States, with a particular focus on the impact on households, SMEs and energy intensive industries, and looking more widely at the EU's competitiveness vis-à-vis its global economic counterparts”. Following such mandate and in view of the preparation by the Commission of a Communication and a Staff Working Document, DG Enterprise and Industry commissioned CEPS to carry out a set of studies aimed at providing well-grounded evidence about the evolution and composition of energy prices and costs at plant level within individual industry sectors. A team of CEPS researchers conducted the research, led by Christian Egenhofer and Lorna Schrefler. Vasileios Rizos served as Project Coordinator. Other CEPS researchers contributing to the project included: Fabio Genoese, Andrea Renda, Andrei Marcu, Julian Wieczorkiewicz, Susanna Roth, Federico Infelise, Giacomo Luchetta, Lorenzo Colantoni, Wijnand Stoefs, Jacopo Timini and Felice Simonelli. In addition to an introductory report entitled “About the Study and Cross-Sectoral Analysis”, CEPS prepared five sectoral case studies: two on ceramics (wall and floor tiles and bricks and roof tiles), two on chemicals (ammonia and chlorine) and one on flat glass. Each of these six studies has been consolidated in this single volume for free downloading on the CEPS website. The specific objective was to complement information already available at macro level with a bottom-up perspective on the operating conditions that industry stakeholders need to deal with, in terms of energy prices and costs. The approach chosen was based on case studies for a selected set (sub-)sectors amongst energy-intensive industries. A standard questionnaire was circulated and respondents were sampled according to specified criteria. Data and information collected were finally presented in a structured format in order to guarantee comparability of results between the different (sub-)sectors analysed. The complete set of files can also be downloaded from the European Commission’s website: http://ec.europa.eu/enterprise/newsroom/cf/itemdetail.cfm?item_id=7238&lang=en&title=Study-on-composition-and-drivers-of-energy-prices-and-costs-in-energy-intnsive-industries The results of the studies were presented at a CEPS Conference held on February 26th along with additional evidence from other similar studies. The presentations can be downloaded at: http://www.ceps.eu/event/level-and-drivers-eu-energy-prices-energy-inten...
Resumo:
Three types of tephra deposits were recovered on Leg 65 of the Deep Sea Drilling Project (DSDP) from three drill sites at the mouth of the Gulf of California: (1) a series of white ash layers at Sites 483, 484, and 485; (2) a layer of plagioclase- phyric sideromelane shards at Site 483; and (3) an indurated, cross-bedded hyaloclastite in Hole 483B. The ash layers in (1) are composed of colorless, fresh rhyolitic glass shards with minor dacitic and rare basaltic shards. These are thought to be derived from explosive volcanoes on the Mexican mainland. Most of the shards in (2) are fresh, but some show marginal to complete alteration to palagonite. The composition of the glass is that of a MORB-type tholeiite, low in Fe and moderately high in Ti, and possibly erupted from off-axis seamounts. Basaltic glass shards occurring in silt about 45 meters above the basement at Site 484 A in the Tamayo Fracture Zone show a distinctly alkalic composition similar to that of the single basement basalt specimen drilled at this site. The hyaloclastite in (3) is made up chiefly of angular sideromelane shards altered to smectite and zeolites (mainly phillipsite) and minor admixtures of terrigenous silt. A very high K and Ba content indicates significant uptake of at least these elements from seawater. Nevertheless, the unusual chemical composition of the underlying massive basalt flow is believed to be reflected in that of the hyaloclastite. This is a powerful argument for interpreting the massive basalt as a surface flow rather than an intrusion. Glass alteration is different in the glassy margins of flows than in thicker glassy pillow rinds. Also, it appears to proceed faster in coarse- than fine-grained sediments.
Resumo:
Major elements, S, F, Cl concentrations and relative proportions of S6+ to total S were analyzed with electron microprobe in sideromelane glass shards from Pleistocene volcaniclastic sediments drilled during ODP Leg 157. Glasses are moderately to strongly evolved and represent a spectrum from alkali basalt, basanite and nephelinite through hawaiite, mugearite and tephrite to phonolitic tephrite. Measured S6+/SumS (0.03±0.98) and calculated Fe2+/Fe3+ (2.5±5.8) ratios in the melt yield preeruptive redox conditions ranging from NNO-1.4 to NNO+2.1. The morphology of the glass shards, variations of S and Cl concentrations (0.010±0.127 wt% S, 0.018±0.129 wt% Cl), calculated preeruptive temperatures (1030±1200 °C) and oxygen fugacities suggest that glasses deposited even within the same ash layers have diverse origin and may have resulted from both submarine and subaerial eruptions. Most vesicle-free glasses are characterized by high concentrations of S and represent undegassed or slightly degassed submarine lavas, whereas vesiculated glasses with low concentrations of S and Cl are strongly degassed and can be ascribed to the eruptions in shallow water or on land. Sideromelane glass shards at Sites 953 are thought to have resulted from submarine eruptions northeast of Gran Canaria, glasses at Site 954 represent mostly volcaniclastic material of shallow water submarine and subaerial eruptions on Gran Canaria and Tenerife, and glasses deposited at Site 956 resulted from submarine or explosive eruptions on Tenerife.
Resumo:
Lithological horizons have been distinguished in sediments cores from different parts of the Sea of Okhotsk based on primary descriptions of sediments and smear slides, and analyses of contents of both calcium carbonate and organic carbon, and opal. Sediment lithology has been correlated with oxygen isotope records and the standard isotope scale and radiocarbon data by AMS method for three cores studied in detail. This allowed to determine in detail periods of carbonaceous and diatomaceous ooze accumulation in the Sea of Okhotsk. Changes in magnetic susceptibility and grain size composition of sediments have been also compared with oxygen-isotope curves and radiocarbon datings. Obtained results confirm that variations in magnetic susceptibility are related with oxygen-isotope stages and influenced by climatic changes. Tephra interlayers K0, TR, K2, K3 have been identified by mineralogical analyses in all studied cores. Stratigraphic location of these tephra interlayers in detailed studied cores and their radiocarbon ages (8.1, 8.05, 26.8, and about 60 ka, respectively) provided base correlation between the interlayers and volcanic eruptions on the Kamchatka Peninsula and the Kuril Islands. This allows to use the former ones as time markers for deep-sea sediments of the Sea of Okhotsk. New lithostratigraphic and tephrochronologic data obtained allowed to correlate Upper Quaternary sediments from the Sea of Okhotsk.