905 resultados para time history analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hospitality managers have a number of methods available to them to enhance employee productivity. The author discusses five major concepts that can lead to successful results in the hospitality industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of waterpipe smoking exceeds that of cigarettes among adolescents in the Middle East where waterpipe is believed as less harmful, less addictive and can be a safer alternative to cigarettes. This dissertation tested the gateway hypothesis that waterpipe can provide a bridge to initiate cigarette smoking, identified the predictors of cigarette smoking progression, and identified predictors of waterpipe smoking progression among a school-based sample of Jordanian adolescents (mean age ± SD) (12.7 ±0.61) years at baseline. Data for this research have been drawn from Irbid Longitudinal Study of smoking behavior, Jordan (2008-2011). The grouped-time survival analysis showed that waterpipe smoking was associated with a higher risk of cigarette smoking initiation compared to never smokers (P < 0.001) and this association was dose dependent (P < 0.001). Predictors of cigarette smoking progression were peer smoking and attending public schools for boys, siblings’ smoking for girls, and the urge to smoke for both genders. Predictors of waterpipe smoking progression were enrollment in public schools, frequent physical activity, and low refusal self-efficacy for boys, ever smoking cigarettes, friends’ and siblings’ waterpipe smoking for girls. Awareness of harms of waterpipe among boys and seeing warning labels on the tobacco packs by girls were protective against waterpipe smoking progression. In Conclusion, waterpipe can serve as a gateway to cigarette smoking initiation among adolescents. Waterpipe and cigarette smoking progressions among initiators were solely family-related among girls, and mainly peer-related among boys. The unique gender differences for both cigarette and waterpipe smoking among Jordanian adolescents in Irbid call for cultural and gender-specific smoking prevention interventions to prevent the progression of smoking among initiators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a modified control chart incorporating concepts of time series analysis. Specifically, we considerer Gaussian mixed transition distribution (GMTD) models. The GMTD models are a more general class than the autorregressive (AR) family, in the sense that the autocorrelated processes may present flat stretches, bursts or outliers. In this scenario traditional Shewhart charts are no longer appropriate tools to monitoring such processes. Therefore, Vasilopoulos and Stamboulis (1978) proposed a modified version of those charts, considering proper control limits based on autocorrelated processes. In order to evaluate the efficiency of the proposed technique a comparison with a traditional Shewhart chart (which ignores the autocorrelation structure of the process), a AR(1) Shewhart control chart and a GMTD Shewhart control chart was made. An analytical expression for the process variance, as well as control limits were developed for a particular GMTD model. The ARL was used as a criteria to measure the efficiency of control charts. The comparison was made based on a series generated according to a GMTD model. The results point to the direction that the modified Shewhart GMTD charts have a better performance than the AR(1) Shewhart and the traditional Shewhart.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time series analysis has played an increasingly important role in weather and climate studies. The success of these studies depends crucially on the knowledge of the quality of climate data such as, for instance, air temperature and rainfall data. For this reason, one of the main challenges for the researchers in this field is to obtain homogeneous series. A time series of climate data is considered homogeneous when the values of the observed data can change only due to climatic factors, i.e., without any interference from external non-climatic factors. Such non-climatic factors may produce undesirable effects in the time series, as unrealistic homogeneity breaks, trends and jumps. In the present work it was investigated climatic time series for the city of Natal, RN, namely air temperature and rainfall time series, for the period spanning from 1961 to 2012. The main purpose was to carry out an analysis in order to check the occurrence of homogeneity breaks or trends in the series under investigation. To this purpose, it was applied some basic statistical procedures, such as normality and independence tests. The occurrence of trends was investigated by linear regression analysis, as well as by the Spearman and Mann-Kendall tests. The homogeneity was investigated by the SNHT, as well as by the Easterling-Peterson and Mann-Whitney-Pettit tests. Analyzes with respect to normality showed divergence in their results. The von Neumann ratio test showed that in the case of the air temperature series the data are not independent and identically distributed (iid), whereas for the rainfall series the data are iid. According to the applied testings, both series display trends. The mean air temperature series displays an increasing trend, whereas the rainfall series shows an decreasing trend. Finally, the homogeneity tests revealed that all series under investigations present inhomogeneities, although they breaks depend on the applied test. In summary, the results showed that the chosen techniques may be applied in order to verify how well the studied time series are characterized. Therefore, these results should be used as a guide for further investigations about the statistical climatology of Natal or even of any other place.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the 1990s, voter turnout in Canadian federal elections has decreased considerably. During the same period, economic inequality significantly increased. Although there is much theoretical work, there have been few empirical studies examining the effect of economic inequality on voter turnout. Using data collected from both national and international sources, I conducted an aggregate level, time series analysis of national turnout and economic inequality for Canadian federal elections between 1979 and 2011. Moreover, this thesis tests Schattschneider's (1960) hypothesis, which argues that increasing rates of voter abstention are a result of economic inequality magnifying differences in relative power between affluent and non-affluent citizens. The findings indicate that economic inequality has a strong negative effect on voter turnout.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The northern Antarctic Peninsula is one of the fastest changing regions on Earth. The disintegration of the Larsen-A Ice Shelf in 1995 caused tributary glaciers to adjust by speeding up, surface lowering, and overall increased ice-mass discharge. In this study, we investigate the temporal variation of these changes at the Dinsmoor-Bombardier-Edgeworth glacier system by analyzing dense time series from various spaceborne and airborne Earth observation missions. Precollapse ice shelf conditions and subsequent adjustments through 2014 were covered. Our results show a response of the glacier system some months after the breakup, reaching maximum surface velocities at the glacier front of up to 8.8 m/d in 1999 and a subsequent decrease to ~1.5 m/d in 2014. Using a dense time series of interferometrically derived TanDEM-X digital elevation models and photogrammetric data, an exponential function was fitted for the decrease in surface elevation. Elevation changes in areas below 1000 m a.s.l. amounted to at least 130±15 m130±15 m between 1995 and 2014, with change rates of ~3.15 m/a between 2003 and 2008. Current change rates (2010-2014) are in the range of 1.7 m/a. Mass imbalances were computed with different scenarios of boundary conditions. The most plausible results amount to -40.7±3.9 Gt-40.7±3.9 Gt. The contribution to sea level rise was estimated to be 18.8±1.8 Gt18.8±1.8 Gt, corresponding to a 0.052±0.005 mm0.052±0.005 mm sea level equivalent, for the period 1995-2014. Our analysis and scenario considerations revealed that major uncertainties still exist due to insufficiently accurate ice-thickness information. The second largest uncertainty in the computations was the glacier surface mass balance, which is still poorly known. Our time series analysis facilitates an improved comparison with GRACE data and as input to modeling of glacio-isostatic uplift in this region. The study contributed to a better understanding of how glacier systems adjust to ice shelf disintegration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fibre lasers have been shown to manifest a laminar-to-turbulent transition when increasing its pump power. In order to study the dynamical complexity of this transition we use advanced statistical tools of time-series analysis. We apply ordinal analysis and the horizontal visibility graph to the experimentally measured laser output intensity. This reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods allow us to unveil coherent structures with well defined time-scales and strong correlations both, in the timing of the laser pulses and in their peak intensities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell’s equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface analysis shows that the silver films are free of detectable contaminants. The finite-difference time-domain calculations, in excellent agreement with experiment, show a rapid fringe amplitude decrease in the near zone (slit-groove distance out to 3–4 wavelengths). Extrapolation to slit-groove distances beyond the near zone shows that the surface wave evolves to the expected bound surface plasmon polariton (SPP). Fourier analysis of these results indicates the presence of a distribution of transient, evanescent modes around the SPP that dephase and dissipate as the surface wave evolves from the near to the far zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work deals with the numerical studies on hydrodynamics of oscillating water column (OWC) wave energy converters and its damping optimization on maximizing wave energy conversion by the OWC device. As a fundamental step, the hydrodynamic problems have been systematically studied by considering the interactions of the wave-structure and of the wave-internal water surface. Our first attention is on how the hydrodynamic performance can be reliably assessed, especially when it comes to the time-domain analysis, and what the physics behind the considerations is. Further on, a damping optimization for the OWC wave energy converter is also present based on the dynamics of the linear system, and a study on how we can optimize the damping for the given sea states so that the power conversion from irregular waves from irregular waves can be maximized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forests change with changes in their environment based on the physiological responses of individual trees. These short-term reactions have cumulative impacts on long-term demographic performance. For a tree in a forest community, success depends on biomass growth to capture above- and belowground resources and reproductive output to establish future generations. Here we examine aspects of how forests respond to changes in moisture and light availability and how these responses are related to tree demography and physiology.

First we address the long-term pattern of tree decline before death and its connection with drought. Increasing drought stress and chronic morbidity could have pervasive impacts on forest composition in many regions. We use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 years. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with species drought tolerance.

Next, we investigate differences among tree species in reproductive output relative to biomass growth with changes in light availability. Previous studies reach conflicting conclusions about the constraints on reproductive allocation relative to growth and how they vary through time, across species, and between environments. We test the hypothesis that canopy exposure to light, a critical resource, limits reproductive allocation by comparing long-term relationships between reproduction and growth for trees from 21 species in forests throughout the southeastern U.S. We found that species had divergent responses to light availability, with shade-intolerant species experiencing an alleviation of trade-offs between growth and reproduction at high light. Shade-tolerant species showed no changes in reproductive output across light environments.

Given that the above patterns depend on the maintenance of transpiration, we next developed an approach for predicting whole-tree water use from sap flux observations. Accurately scaling these observations to tree- or stand-levels requires accounting for variation in sap flux between wood types and with depth into the tree. We compared different models with sap flux data to test the hypotheses that radial sap flux profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in new settings. We outline a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.

Finally, we estimated tree water balances during drought with a statistical time-series analysis. Moisture limitation in forest stands comes predominantly from water use by the trees themselves, a drought-stand feedback. We show that drought impacts on tree fitness and forest composition can be predicted by tracking the moisture reservoir available to each tree in a mass balance. We apply this model to multiple seasonal droughts in a temperate forest with measurements of tree water use to demonstrate how species and size differences modulate moisture availability across landscapes. As trees deplete their soil moisture reservoir during droughts, a transpiration deficit develops, leading to reduced biomass growth and reproductive output.

This dissertation draws connections between the physiological condition of individual trees and their behavior in crowded, diverse, and continually-changing forest stands. The analyses take advantage of growing data sets on both the physiology and demography of trees as well as novel statistical techniques that allow us to link these observations to realistic quantitative models. The results can be used to scale up tree measurements to entire stands and address questions about the future composition of forests and the land’s balance of water and carbon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the model’s ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.