978 resultados para thermodynamic calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent transient curves of excited levels of a model Eu3+ complex have been measured for the first time. A coincidence between the temperature dependent rise time of the 5D0 emitting level and decay time of the 5D1 excited level in the [Eu(tta)3(H2O)2] complex has been found, which unambiguously proves the T1→5D1→5D0 sensitization pathway. A theoretical approach for the temperature dependent energy transfer rates has been successfully applied to the rationalization of the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] 1. The present study examined whether reductions in muscle blood flow with exercise-induced dehydration would reduce substrate delivery and metabolite and heat removal to and from active skeletal muscles during prolonged exercise in the heat. A second aim was to examine the effects of dehydration on fuel utilisation across the exercising leg and identify factors related to fatigue. 2. Seven cyclists performed two cycle ergometer exercise trials in the heat (35 C; 61 +/- 2 % of maximal oxygen consumption rate, VO2,max), separated by 1 week. During the first trial (dehydration, DE), they cycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive DE and hyperthermia (3.9 +/- 0.3 % body weight loss and 39.7 +/- 0.2 C oesophageal temperature, Toes). On the second trial (control), they cycled for the same period of time maintaining euhydration by ingesting fluids and stabilising Toes at 38.2 +/- 0.1 degrees C. 3. After 20 min of exercise in both trials, leg blood flow (LBF) and leg exchange of lactate, glucose, free fatty acids (FFA) and glycerol were similar. During the 20 to 135 +/- 4 min period of exercise, LBF declined significantly in DE but tended to increase in control. Therefore, after 120 and 135 +/- 4 min of DE, LBF was 0.6 +/- 0.2 and 1.0 +/- 0.3 l min-1 lower (P < 0.05), respectively, compared with control. 4. The lower LBF after 2 h in DE did not alter glucose or FFA delivery compared with control. However, DE resulted in lower (P < 0.05) net FFA uptake and higher (P < 0.05) muscle glycogen utilisation (45 %), muscle lactate accumulation (4.6-fold) and net lactate release (52 %), without altering net glycerol release or net glucose uptake. 5. In both trials, the mean convective heat transfer from the exercising legs to the body core ranged from 6.3 +/- 1.7 to 7.2 +/- 1.3 kJ min-1, thereby accounting for 35-40 % of the estimated rate of heat production ( approximately 18 kJ min-1). 6. At exhaustion in DE, blood lactate values were low whereas blood glucose and muscle glycogen levels were still high. Exhaustion coincided with high body temperature ( approximately 40 C). 7. In conclusion, the present results demonstrate that reductions in exercising muscle blood flow with dehydration do not impair either the delivery of glucose and FFA or the removal of lactate during moderately intense prolonged exercise in the heat. However, dehydration during exercise in the heat elevates carbohydrate oxidation and lactate production. A major finding is that more than one-half of the metabolic heat liberated in the contracting leg muscles is dissipated directly to the surrounding environment. The present results indicate that hyperthermia, rather than altered metabolism, is the main factor underlying the early fatigue with dehydration during prolonged exercise in the heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Isocitrate Dehydrogenase (IDH) is a key enzyme in the Krebs cycle, being responsible for the production of one of the three CO2 molecules related to cellular respiration. In order to measure the potential CO2 production linked to the marine planktonic community we have adapted an enzymatic methodology. Preliminary results show that different proportions of autotrophs, heterotrophs and mixotrophs and their metabolic pathways, lead to different relationships between potential CO2 emission and potential O2 consumption during cellular respiration. Although more experiments need to be made, this methodology is leading to a better understanding of cellular respiration in marine samples and their impact on the food chain, vertical Carbon flux and the current sequestering capacity for anthropogenic CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF4]. Solubility data (xIL,T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, xIL, with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies Hm E and volumes Vm E, can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Excess thermodynamic properties VE m and HE m, have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity ME contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This work presents experimental mixing properties, hEand vE, at several temperatures and the iso-baric vapor–liquid equilibria (iso-p VLE) at 101.32 kPa for four binaries containing pentane and four alkyl(methyl to butyl) methanoates. Particular conditions are established to work with these solutions withhighly volatile compounds, especially for the case of methyl methanoate + pentane system, for whicha continuous feeding device is designed and constructed for measuring the densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This paper presents the experimental measurements of isobaric vapor−liquid equilibria (iso-p VLE) and excess volumes (vE) at several temperatures in the interval (288.15 to 328.15) K for six binary systems composed of two alkyl (methyl, ethyl) propanoates and three odd carbon alkanes (C5 to C9). The mixing processes were expansive, vE > 0, with (δvE/δT)p > 0, and endothermic. The installation used to measure the iso-p VLE was improved by controlling three of the variables involved in the experimentation with a PC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This work studies the binaries of 1-butyl-X-methylpyridinium tetrafluoroborate [bXmpy][BF4] (X = 2, 3, and 4) with four 1,ω-dichloroalkanes, ω = 1−4, using the results obtained for the mixing properties hE and v E at two temperatures. The three isomers of the ionic liquid (IL) are weakly miscible with the 1,ω-dichloroalkanes when ω ≥ 5 and moderately soluble for ω = 4. The vE s of all the binaries present contractive effects, v E < 0, which are more pronounced with increasing temperature; the variation in vE with ω is positive, although this changes after ω = 4 due to problems of immiscibility

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H2O and HNO3 redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been improved, e.g. a method for the assimilation of meteorological analysis data in the general circulation model, the liquid PSC particle composition scheme, and the calculation of heterogeneous reaction rate coefficients. The interplay of these model components is demonstrated in a simulation of stratospheric chemistry with the coupled general circulation model. Tests against recent satellite data show that the model successfully reproduces the Antarctic ozone hole.