979 resultados para thermal stress
Resumo:
Prior research on school dropout has often focused on stable person- and institution-level variables. In this research, we investigate longitudinally perceived stress and optimism as predictors of dropout intentions over a period of four years, and distinguish between stable and temporary predictors of dropout intentions. Findings based on a nationally representative sample of 16e20 year-olds in Switzerland (N ¼ 4312) show that both average levels of stress and optimism as well as annually varying levels of stress and optimism affect dropout intentions. Additionally, results show that optimism buffers the negative impact of annually varying stress (i.e., years with more stress than usual), but not of stable levels of stress (i.e., stress over four years). The implications of the results are discussed according to a dynamic and preventive approach of school dropout.
Resumo:
Some studies argue that the Fed reacts to financial market developments. Using data covering the period 1985:Q1 - 2008:Q4 and employing an augmented Taylor rule specification, we re-examine that conjecture. We find that evidence in favour of such a reaction is largely driven by the Fed’s behaviour during the 2007-2008 financial crisis.
Resumo:
Stressful situations during development can shape the phenotype for life by provoking a trade-off between development and survival. Stress hormones, mainly glucocorticoids, play an important orchestrating role in this trade-off. Hence, how stress sensitive an animal is critically determines the phenotype and ultimately fitness. In several species, darker eumelanic individuals are less sensitive to stressful conditions than less eumelanic conspecifics, which may be due to the pleiotropic effects of genes affecting both coloration and physiological traits. We experimentally tested whether the degree of melanin-based coloration is associated with the sensitivity to an endocrine response to stressful situations in the barn owl. We artificially administered the mediator of a hormonal stress response, corticosterone, to nestlings to examine the prediction that corticosterone-induced reduction in growth rate is more pronounced in light eumelanic nestlings than in darker nest mates. To examine whether such an effect may be genetically determined, we swapped hatchlings between randomly chosen pairs of nests. We first showed that corticosterone affects growth and, thus, shapes the phenotype. Second, we found that under corticosterone administration, nestlings with large black spots grew better than nestlings with small black spots. As in the barn owl the expression of eumelanin-based coloration is heritable and not sensitive to environmental conditions, it is therefore a reliable, genetically based sign of the ability to cope with an increase in blood corticosterone level.
Resumo:
Dans le cadre de l'activité professionnelle, des facteurs de stress d'ordre psychologique, social, et liés à l'organisation du travail, peuvent induire des réponses physiologiques et comportementales impliquées dans la survenue de pathologies comme les maladies cardiovasculaires, les troubles de la santé mentale et les troubles musculosquelettiques.Le Régime social des indépendants (RSI) a sollicité l'Inserm afin de disposer d'un bilan des connaissances sur le stress d'origine professionnelle chez les travailleurs indépendants et ses répercussions sur la santé.Regroupant à la fois des compétences en biologie, psychologie, sociologie et économie de la santé, cette expertise collective présente les modèles et les mécanismes explicatifs mettant en relation le stress au travail et les principales pathologies.Les stratégies de prévention individuelle et collective qui se développent dans le milieu des travailleurs salariés peuvent-elles être adaptées aux travailleurs indépendants ? [Ed.]
Resumo:
OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Resumo:
Introduction: Reversed shoulder prostheses have a semi-congruent design. Furthermore, the center of rotation is inferiorly displaced and a significant tension in the deltoid is often necessary to ensure the joint stability. Consequently, stress transmitted to peri-prosthetic bone may be increased, and could lead to stress fractures. We review a series of patients after reversed shoulder arthroplasty (RSA) and look specifically at the occurrence of postoperative peri-prosthetic stress fractures. Methods: Between 2001 and 2006, 46 consecutive RSA were performed. There were 26 women and 20 men with a mean age of 74 years (53-86). All had preoperative MRI or CT-scan, which did not reveal any fracture. All had a delto-pectoral approach with standard rehabilitation. Review was performed at a mean follow up of 30 months (6-60), and consisted of clinical and radiological (plain X-rays) examinations. Every time a fracture was suspected or in case of recurrent unexpected pain, CT-scan evaluations were performed. The occurrence of peri-prosthetic fractures was looked for. Results: Three patients (7%) sustained a scapular fracture (1 spinal and 2 acromial) without any trauma, between 3 and 6 months after the RSA. Furthermore, one of these patients developed 3 months later a spontaneous clavicular fracture, leading to an overall stress fracture rate of 9%. The four fractures were treated conservatively. Three malunions and one acromial non-union occurred. The range of motion in abduction and flexion decreased significantly after the fracture and stayed limited in all cases. All the three patients reported a recurrence of pain. Conclusion: Peri-prosthetic stress fractures, especially in the acromion and in the spine of the scapula are not unusual after RSA. The etiology is not well known. The increase of stress in peri-prosthetic bone may be due to the semi-congruent design and to an overtension of the deltoid. The management of this complication stays difficult. The conservative treatment leads to mal- or non-union, with persistent pain and limited range of motion.
Resumo:
Career adapt-ability has recently gained momentum as a psychosocial construct that not only has much to offer the field of career development, but also contributes to positive coping, adjustment and self-regulation through the four dimensions of concern, control, curiosity and confidence. The positive psychology movement, with concepts such as the orientations to happiness, explores the factors that contribute to human flourishing and optimum functioning. This research has two main contributions; 1) to validate a German version of the Career Adapt-Abilities Scale (CAAS), and 2) to extend the contribution of adapt-abilities to the field of work stress and explore its mediating capacity in the relation between orientations to happiness and work stress. We used a representative sample of the German-speaking Swiss working population including 1204 participants (49.8% women), aged between 26 and 56 (Mage = 42.04). Results indicated that the German version of the CAAS is valid, with overall high levels of model fit suggesting that the conceptual structure of career adapt-ability replicates well in this cultural context. Adapt-abilities showed a negative relationship to work stress, and a positive one with orientations to happiness. The engagement and pleasure scales of orientations to happiness also correlated negatively with work stress. Moreover, career adapt-ability mediates the relationship between orientations to happiness and work stress. In depth analysis of the mediating effect revealed that control is the only significant mediator. Thus control may be acting as a mechanism through which individuals attain their desired life at work subsequently contributing to reduced stress levels.
Resumo:
Based on ecological and metabolic arguments, some authors predict that adaptation to novel, harsh environments should involve alleles showing negative (diminishing return) epistasis and/or that it should be mediated in part by evolution of maternal effects. Although the first prediction has been supported in microbes, there has been little experimental support for either prediction in multicellular eukaryotes. Here we use a line-cross design to study the genetic architecture of adaptation to chronic larval malnutrition in a population of Drosophila melanogaster that evolved on an extremely nutrient-poor larval food for 84 generations. We assayed three fitness-related traits (developmental rate, adult female weight and egg-to-adult viability) under the malnutrition conditions in 14 crosses between this selected population and a nonadapted control population originally derived from the same base population. All traits showed a pattern of negative epistasis between alleles improving performance under malnutrition. Furthermore, evolutionary changes in maternal traits accounted for half of the 68% increase in viability and for the whole of 8% reduction in adult female body weight in the selected population (relative to unselected controls). These results thus support both of the above predictions and point to the importance of nonadditive effects in adaptive microevolution.
Resumo:
In the damaged heart, cardiac adaptation relies primarily on cardiomyocyte hypertrophy. The recent discovery of cardiac stem cells in the postnatal heart, however, suggests that these cells could participate in the response to stress via their capacity to regenerate cardiac tissues. Using models of cardiac hypertrophy and failure, we demonstrate that components of the Notch pathway are up-regulated in the hypertrophic heart. The Notch pathway is an evolutionarily conserved cell-to-cell communication system, which is crucial in many developmental processes. Notch also plays key roles in the regenerative capacity of self-renewing organs. In the heart, Notch1 signaling takes place in cardiomyocytes and in mesenchymal cardiac precursors and is activated secondary to stimulated Jagged1 expression on the surface of cardiomyocytes. Using mice lacking Notch1 expression specifically in the heart, we show that the Notch1 pathway controls pathophysiological cardiac remodeling. In the absence of Notch1, cardiac hypertrophy is exacerbated, fibrosis develops, function is altered, and the mortality rate increases. Therefore, in cardiomyocytes, Notch controls maturation, limits the extent of the hypertrophic response, and may thereby contribute to cell survival. In cardiac precursors, Notch prevents cardiogenic differentiation, favors proliferation, and may facilitate the expansion of a transient amplifying cell compartment.
Resumo:
In Pseudomonas fluorescens biocontrol strain CHA0, the two-component system GacS/GacA positively controls the synthesis of extracellular products such as hydrogen cyanide, protease, and 2,4-diacetylphloroglucinol, by upregulating the transcription of small regulatory RNAs which relieve RsmA-mediated translational repression of target genes. The expression of the stress sigma factor sigmaS (RpoS) was controlled positively by GacA and negatively by RsmA. By comparison with the wild-type CHA0, both a gacS and an rpoS null mutant were more sensitive to H2O2 in stationary phase. Overexpression of rpoS or of rsmZ, encoding a small RNA antagonistic to RsmA, restored peroxide resistance to a gacS mutant. By contrast, the rpoS mutant showed a slight increase in the expression of the hcnA (HCN synthase subunit) gene and of the aprA (major exoprotease) gene, whereas overexpression of sigmaS strongly reduced the expression of these genes. These results suggest that in strain CHA0, regulation of exoproduct synthesis does not involve sigmaS as an intermediate in the Gac/Rsm signal transduction pathway whereas sigmaS participates in Gac/Rsm-mediated resistance to oxidative stress.
Resumo:
Mucocutaneous leishmaniasis (MCL) in South and Central America is characterized by the dissemination (metastasis) of Leishmania Viannia subgenus parasites from a cutaneous lesion to nasopharyngeal tissues. Little is known about the pathogenesis of MCL, especially with regard to the virulence of the parasites and the process of metastatic dissemination. We previously examined the functional relationship between cytoplasmic peroxiredoxin and metastatic phenotype using highly, infrequently, and nonmetastatic clones isolated from an L. (V.) guyanensis strain previously shown to be highly metastatic in golden hamsters. Distinct forms of cytoplasmic peroxiredoxin were identified and found to be associated with the metastatic phenotype. We report here that peroxidase activity in the presence of hydrogen peroxide and infectivity differs between metastatic and nonmetastatic L. (V.) guyanensis clones. After hydrogen peroxide treatment or heat shock, peroxiredoxin was detected preferentially as dimers in metastatic L. (V.) guyanensis clones and in L. (V.) panamensis strains from patients with MCL, compared with nonmetastatic parasites. These data provide evidence that resistance to the first microbicidal response of the host cell by Leishmania promastigotes is linked to peroxiredoxin conformation and may be relevant to intracellular survival and persistence, which are prerequisites for the development of metastatic disease.