881 resultados para swd: Virtual environments
Resumo:
Companies that perform well are often identified as either possessing creative work environments and (or) having high levels of employee engagement. Creative work environments are largely not well defined, although research alludes to contributing factors. On the other hand employee engagement is defined as the multiple emotional, rational and behavioural dimensions of an employee's consistent level of effort, commitment and connection to their job. Some authors including Saks (2006) and Shuck and Wollard (2010) call for more scholarly research to increase our understanding of the drivers of employee engagement and the actions that organisations can take to improve engagement. There are references made in the literature to the existence of a relationship between a creative work environment and engaged employees (Isaksen & Ekvall 2010), but there is a lack of empirical evidence providing support for the direct relationship between the two. This study aims to explore the relationship, addressing the question of how a creative work environment impacts on employee engagement. Exploratory research to investigate this relationship will use a qualitative methodology with semi-structured interviews, field observations and document analysis. Key themes will be analysed at both the individual and team level reflecting the multi-level nature of the constructs.
Resumo:
While there is clear recognition of the need to incorporate sustainable development into university curricula, there is limited research that examines how to achieve that integration or evaluates its impacts on student learning. This paper responds to these knowledge gaps through a case study of curriculum renewal that involved embedding sustainability into a first year engineering curriculum. The initiative was guided by a deliberative and dynamic model for curriculum renewal that brought together internal and external stakeholders through a structured sequence of facilitated workshops and meetings. That process identified sustainability-related knowledge and skills relevant for first year engineering, and faculty members teaching in the first year program were guided through a process of curriculum renewal to meet those needs. The process through which the whole of curriculum renewal was undertaken is innovative and provides a case study of precedent in the field of education for sustainability. The study demonstrates the contribution that can be made by a web-based sustainability portal in supporting curriculum renewal. Learning and teaching outcomes were evaluated through ‘before and after surveys’ of the first year engineering students. Statistically significant increases in student's self-reported knowledge of sustainability were measured as a result of exposure to the renewed first year curriculum and this confirmed the value of the initiative in terms of enhancing student learning. While applied in this case to engineering, the process to achieve integration of sustainability into the curriculum approach is likely to have value for other academic disciplines. Considering student performance on assignments and exam questions relating to sustainability would provide a stronger basis for future research to understand the impact of initiatives like this on student learning.
Resumo:
This is an editorial introduction for a virtual edition focused on neoliberalism in educational sectors for the journal, "Critical Studies in Education". The introduction outlines the nature and progress of neoliberalism, then reviews the selected articles from the journal's archives.
Resumo:
This thesis examines the extent of which economic instruments can be used to minimise environmental damage in the coastal and marine environments, and the role of offsets to compensate for residual damage. Economic principles are used to review current command and control systems, potential incentive based mechanisms, and the development of appropriate offsets. Implementing offsets in the marine environment has a number of challenges, so alternative approaches may be necessary. The study finds that offsets in areas remote from the initial impact, or even to protect different species, may be acceptable provided they result in greater conservation benefits than the standard like-for-like offset. This study is particularly relevant for the design of offsets in the coastal and marine environments where there is limited scope for like-for-like offsets.
Resumo:
This paper examines the dispute between the Seattle company Virtual Countries Inc. and the Republic of South Africa over the ownership of the domain name address southafrica.com. The first part of the paper deals with the pre-emptive litigation taken by Virtual Countries Inc. in a District Court of the United States. The second part considers the possible arbitration of the dispute under the Uniform Domain Name Dispute Resolution Process of the Internet Corporation for Assigned Names and Numbers (ICANN) and examines the wider implications of this dispute for the jurisdiction and the governance of ICANN. The final section of the paper evaluates the Final Report of the Second WIPO Internet Domain Name Process.
Resumo:
This project examines procurement of creative services in a bureaucratic setting and proposes alternative procedures that better negotiate the tensions between creative and bureaucratised ways of working. The outcome is a project procurement strategy called 'Creative Practice Enabled Procurement' and a prototype industry toolkit 'It's Not Shopping! A Guide to Purchasing Innovation and Creativity'. The research is of benefit to managers and creative practitioners, especially those working in interpretive settings. The goal is to propagate better forms of creative procurement across government and private sectors by providing an evidence-based case for improved, practical alternatives.
Resumo:
The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.
Resumo:
Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.
Resumo:
The visual characteristics of urban environments have been changing dramatically with the growth of cities around the world. Protection and enhancement of landscape character in urban environments have been one of the challenges for policy makers in addressing sustainable urban growth. Visual openness and enclosure in urban environments are important attributes in perception of visual space which affect the human interaction with physical space and which can be often modified by new developments. Measuring visual openness in urban areas results in more accurate, reliable, and systematic approach to manage and control visual qualities in growing cities. Recent advances in techniques in geographic information systems (GIS) and survey systems make it feasible to measure and quantify this attribute with a high degree of realism and precision. Previous studies in this field do not take full advantage of these improvements. This paper proposes a method to measure the visual openness and enclosure in a changing urban landscape in Australia, on the Gold Coast, by using the improved functionality in GIS. Using this method, visual openness is calculated and described for all publicly accessible areas in the selected study area. A final map is produced which shows the areas with highest visual openness and visibility to natural landscape resources. The output of this research can be used by planners and decision-makers in managing and controlling views in complex urban landscapes. Also, depending on the availability of GIS data, this method can be applied to any region including non-urban landscapes to help planners and policy-makers manage views and visual qualities.
Resumo:
In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.
Resumo:
Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.
Resumo:
By the time students reach the middle years they have experienced many chance activities based on dice. Common among these are rolling one die to explore the relationship of frequency and theoretical probability, and rolling two dice and summing the outcomes to consider their probabilities. Although dice may be considered overused by some, the advantage they offer is a familiar context within which to explore much more complex concepts. If the basic chance mechanism of the device is understood, it is possible to enter quickly into an arena of more complex concepts. This is what happened with a two hour activity engaged in by four classes of Grade 6 students in the same school. The activity targeted the concepts of variation and expectation. The teachers held extended discussions with their classes on variation and expectation at the beginning of the activity, with students contributing examples of the two concepts from their own experience. These notions are quite sophisticated for Grade 6, but the underlying concepts describe phenomena that students encounter every day. For example, time varies continuously; sporting results vary from game to game; the maximum temperature varies from day to day. However, there is an expectation about tomorrow’s maximum temperature based on the expert advice from the weather bureau. There may also be an expectation about a sporting result based on the participants’ previous results. It is this juxtaposition that makes life interesting. Variation hence describes the differences we see in phenomena around us. In a scenario displaying variation, expectation describes the effort to characterise or summarise the variation and perhaps make a prediction about the message arising from the scenario. The explicit purpose of the activity described here was to use the familiar scenario of rolling a die to expose these two concepts. Because the students had previously experienced rolling physical dice they knew instinctively about the variation that occurs across many rolls and about the theoretical expectation that each side should “come up” one-sixth of the time. They had observed the instances of the concepts in action, but had not consolidated the underlying terminology to describe it. As the two concepts are so fundamental to understanding statistics, we felt it would be useful to begin building in the familiar environment of rolling a die. Because hand-held dice limit the explorations students can undertake, the classes used the soft-ware TinkerPlots (Konold & Miller, 2011) to simulate rolling a die multiple times.
Resumo:
Digital technology offers enormous benefits (economic, quality of design and efficiency in use) if adopted to implement integrated ways of representing the physical world in a digital form. When applied across the full extent of the built and natural world, it is referred to as the Digital Built Environment (DBE) and encompasses a wide range of approaches and technology initiatives, all aimed at the same end goal: the development of a virtual world that sufficiently mirrors the real world to form the basis for the smart cities of the present and future, enable efficient infrastructure design and programmed maintenance, and create a new foundation for economic growth and social well-being through evidence-based analysis. The creation of a National Data Policy for the DBE will facilitate the creation of additional high technology industries in Australia; provide Governments, industries and citizens with greater knowledge of the environments they occupy and plan; and offer citizen-driven innovations for the future. Australia has slipped behind other nations in the adoption and execution of Building Information Modelling (BIM) and the principal concern is that the gap is widening. Data driven innovation added $67 billion to the Australian economy in 20131. Strong open data policy equates to $16 billion in new value2. Australian Government initiatives such as the Digital Earth inspired “National Map” offer a platform and pathway to embrace the concept of a “BIM Globe”, while also leveraging unprecedented growth in open source / open data collaboration. Australia must address the challenges by learning from international experiences—most notably the UK and NZ—and mandate the use of BIM across Government, extending the Framework for Spatial Data Foundation to include the Built Environment as a theme and engaging collaboration through a “BIM globe” metaphor. This proposed DBE strategy will modernise the Australian urban planning and the construction industry. It will change the way we develop our cities by fundamentally altering the dynamics and behaviours of the supply chains and unlocking new and more efficient ways of collaborating at all stages of the project life-cycle. There are currently two major modelling approaches that contribute to the challenge of delivering the DBE. Though these collectively encompass many (often competing) approaches or proprietary software systems, all can be categorised as either: a spatial modelling approach, where the focus is generally on representing the elements that make up the world within their geographic context; and a construction modelling approach, where the focus is on models that support the life cycle management of the built environment. These two approaches have tended to evolve independently, addressing two broad industry sectors: the one concerned with understanding and managing global and regional aspects of the world that we inhabit, including disciplines concerned with climate, earth sciences, land ownership, urban and regional planning and infrastructure management; the other is concerned with planning, design, construction and operation of built facilities and includes architectural and engineering design, product manufacturing, construction, facility management and related disciplines (a process/technology commonly known as Building Information Modelling, BIM). The spatial industries have a strong voice in the development of public policy in Australia, while the construction sector, which in 2014 accounted for around 8.5% of Australia’s GDP3, has no single voice and because of its diversity, is struggling to adapt to and take advantage of the opportunity presented by these digital technologies. The experience in the UK over the past few years has demonstrated that government leadership is very effective in stimulating industry adoption of digital technologies by, on the one hand, mandating the use of BIM on public procurement projects while at the same time, providing comparatively modest funding to address the common issues that confront the industry in adopting that way of working across the supply chain. The reported result has been savings of £840m in construction costs in 2013/14 according to UK Cabinet Office figures4. There is worldwide recognition of the value of bringing these two modelling technologies together. Australia has the expertise to exercise leadership in this work, but it requires a commitment by government to recognise the importance of BIM as a companion methodology to the spatial technologies so that these two disciplinary domains can cooperate in the development of data policies and information exchange standards to smooth out common workflows. buildingSMART Australasia, SIBA and their academic partners have initiated this dialogue in Australia and wish to work collaboratively, with government support and leadership, to explore the opportunities open to us as we develop an Australasian Digital Built Environment. As part of that programme, we must develop and implement a strategy to accelerate the adoption of BIM processes across the Australian construction sector while at the same time, developing an integrated approach in concert with the spatial sector that will position Australia at the forefront of international best practice in this area. Australia and New Zealand cannot afford to be on the back foot as we face the challenges of rapid urbanisation and change in the global environment. Although we can identify some exemplary initiatives in this area, particularly in New Zealand in response to the need for more resilient urban development in the face of earthquake threats, there is still much that needs to be done. We are well situated in the Asian region to take a lead in this challenge, but we are at imminent risk of losing the initiative if we do not take action now. Strategic collaboration between Governments, Industry and Academia will create new jobs and wealth, with the potential, for example, to save around 20% on the delivery costs of new built assets, based on recent UK estimates.
Resumo:
BACKGROUND Experimental learning, traditionally conducted in on-campus laboratory venues, is the cornerstone of science and engineering education. In order to ensure that engineering graduates are exposed to ‘real-world’ situations and attain the necessary professional skill-sets, as mandated by course accreditation bodies such as Engineers Australia, face-to-face laboratory experimentation with real equipment has been an integral component of traditional engineering education. The online delivery of engineering coursework endeavours to mimic this with remote and simulated laboratory experimentation. To satisfy student and accreditation requirements, the common practice has been to offer equivalent remote and/or simulated laboratory experiments in lieu of the ones delivered, face-to face, on campus. The current implementations of both remote and simulated laboratories tend to be specified with a focus on technical characteristics, instead of pedagogical requirements. This work attempts to redress this situation by developing a framework for the investigation of the suitability of different experimental educational environments to deliver quality teaching and learning. PURPOSE For the tertiary education sector involved with technical or scientific training, a research framework capable of assessing the affordances of laboratory venues is an important aid during the planning, designing and evaluating stages of face-to-face and online (or cyber) environments that facilitate student experimentation. Providing quality experimental learning venues has been identified as one of the distance-education providers’ greatest challenges. DESIGN/METHOD The investigation draws on the expertise of staff at three Australian universities: Swinburne University of Technology (SUT), Curtin University (Curtin) and Queensland University of Technology (QUT). The aim was to analyse video recorded data, in order to identify the occurrences of kikan-shido (a Japanese term meaning ‘between desks instruction’ and over-the-shoulder learning and teaching (OTST/L) events, thereby ascertaining the pedagogical affordances in face-to-face laboratories. RESULTS These will be disseminated at a Master Class presentation at this conference. DISCUSSION Kikan-shido occurrences did reflect on the affordances of the venue. Unlike with other data collection methods, video recorded data and its analysis is repeatable. Participant bias is minimised or even eradicated and researcher bias tempered by enabling re-coding by others. CONCLUSIONS Framework facilitates the identification of experiential face-to-face learning venue affordances. Investigation will continue with on-line venues.
Resumo:
Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.