921 resultados para static tester
Resumo:
Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.
Resumo:
We employed a novel cuing paradigm to assess whether dynamically versus statically presented facial expressions differentially engaged predictive visual mechanisms. Participants were presented with a cueing stimulus that was either the static depiction of a low intensity expressed emotion; or a dynamic sequence evolving from a neutral expression to the low intensity expressed emotion. Following this cue and a backwards mask, participants were presented with a probe face that displayed either the same emotion (congruent) or a different emotion (incongruent) with respect to that displayed by the cue although expressed at a high intensity. The probe face had either the same or different identity from the cued face. The participants' task was to indicate whether or not the probe face showed the same emotion as the cue. Dynamic cues and same identity cues both led to a greater tendency towards congruent responding, although these factors did not interact. Facial motion also led to faster responding when the probe face was emotionally congruent to the cue. We interpret these results as indicating that dynamic facial displays preferentially invoke predictive visual mechanisms, and suggest that motoric simulation may provide an important basis for the generation of predictions in the visual system.
Resumo:
The Escherichia coli mu operon was subcloned into a pKK233-2 vector containing rat glutathione S-transferase (GST) 5-5 cDNA and the plasmid thus obtained was introduced into Salmonella typhimurium TA1535. The newly developed strain S.typhimurium NM5004, was found to have 52-fold greater GST activity than the original umu strain S.typhimurium TA1535/pSK1002. We compared sensitivities of these two tester strains, NM5004 and TA1535/ pSK1002, for induction of umuC gene expression with several dihaloalkanes which are activated or inactivated by GST 5-5 activity. The induction of umuC gene expression by these chemicals was monitored by measuring the cellular P-galactosidase activity produced by umuC'lacZ fusion gene in these two tester strains. Ethylene dibromide, 1-bromo-2-chloroethane, 1,2-dichloroethane, and methylene dichloride induced umuC gene expression more strongly in the NM5004 strain than the original strain, 4-Nitroquinoline 1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine were found to induce umuC gene expression to similar extents in both strains. In the case of 1-nitropyrene and 2-nitrofluorene, however, NM5004 strain showed weaker umuC gene expression responses than the original TA1535/ pSK1002 strain, 1,2-Epoxy-3-(4'-nitrophenoxy)propane, a known substrate for GST 5-5, was found to inhibit umuC induction caused by 1-bromo-2-chloroethane. These results indicate that this new tester NM5004 strain expressing a mammalian GST theta class enzyme may be useful for studies of environmental chemicals proposed to be activated or inactivated by GST activity.
Resumo:
Conjugation of chemicals with glutathione (GSH) can lead to decreased or increased toxicity. A genetic deficiency in the GSH S-transferase μ class gene M1 has been hypothesized to lead to greater risk of lung cancer in smokers. Recently a gene deletion polymorphism involving the human θ enzyme T1 has been described; the enzyme is present in erythrocytes and can be readily assayed. A rat θ class enzyme, 5-5, has structural and catalytic similarity and the protein was expressed in the Salmonella typhimurium tester strain TA1535. Expression of the cDNA vector increased the mutagenicity of ethylene dibromide and several methylene dihalides. Mutations resulting from the known GSH S-transferase substrate 1,2-epoxy-3-(4′nitrophenoxy)propane were decreased in the presence of the transferase. Expression of transferase 5-5 increased mutations when 1,2,3,4-diepoxybutane (butadiene diepoxide), 4-bromo-1,2-epoxybutane, or 1,3-dichloracetone were added. The latter compound is a model for the putative 1,2-dibromo-3-chloropropane oxidation product 1-bromo-3-chloroacetone. These genotoxicity and genotyping assays may be of use in further studies of the roles of GSH S-transferase θ enzymes in bioactivation and detoxication and any changes in risk due to polymorphism.
Resumo:
Dihalomethanes can produce liver tumors in mice but not in rats, and concern exists about the risk of these compounds to humans. Glutathione (GSH) conjugation of dihalomethanes has been considered to be a critical event in the bioactivation process, and risk assessment is based upon this premise; however, there is little experimental support for this view or information about the basis of genotoxicity. A plasmid vector containing rat GSH S-transferase 5-5 was transfected into the Salmonella typhimurium tester strain TA1535, which then produced active enzyme. The transfected bacteria produced base-pair revertants in the presence of ethylene dihalides or dihalomethanes, in the order CH2Br2 > CH2BrCl > CH2Cl2. However, revertants were not seen when cells were exposed to GSH, CH2Br2, and an amount of purified GSH S-transferase 5-5 (20-fold excess in amount of that expressed within the cells). HCHO, which is an end product of the reaction of GSH with dihalomethanes, also did not produce mutations. S-(1-Acetoxymethyl)GSH was prepared as an analog of the putative S-(1-halomethyl)GSH reactive intermediates. This analog did not produce revertants, consistent with the view that activation of dihalomethanes must occur within the bacteria to cause genetic damage, presenting a model to be considered in studies with mammalian cells. S-(1-Acetoxymethyl)GSH reacted with 2′-deoxyguanosine to yield a major adduct, identified as S-[1-(N2-deoxyguanosinyl)methyl]GSH. Demonstration of the activation of dihalomethanes by this mammalian GSH S-transferase theta class enzyme should be of use in evaluating the risk of these chemicals, particularly in light of reports of the polymorphic expression of a similar activity in humans.
Resumo:
A descriptive study was undertaken to establish the 95 percentile limits (proposed normal reference range) for pressure beneath the hallux, metatarsal heads, and heel in a group of healthy adult subjects. A new force plate device capable of accurately measuring discrete areas of pressure beneath the human foot with high temporal and spatial resolution was used. The system is capable of accurately measuring plantar foot pressure during dynamic and static foot function. The results of this research are in close agreement with other published studies of plantar foot pressure measurement with comparable systems.
Resumo:
Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.
Resumo:
Objectives To compare the efficacy of two exercise programs in reducing pain and disability for individuals with non-specific low back pain and to examine the underlying mechanical factors related to pain and disability for individuals with NSLBP. Design A single-blind, randomized controlled trial. Methods: Eighty participants were recruited from eleven community-based general medical practices and randomized into two groups completing either a lumbopelvic motor control or a combined lumbopelvic motor control and progressive hip strengthening exercise therapy program. All participants received an education session, 6 rehabilitation sessions including real time ultrasound training, and a home based exercise program manual and log book. The primary outcomes were pain (0-100mm visual analogue scale), and disability (Oswestry Disability Index V2). The secondary outcomes were hip strength (N/kg) and two-dimensional frontal plane biomechanics (°) measure during the static Trendelenburg test and while walking. All outcomes were measured at baseline and at 6-week follow up. Results There was no statistical difference in the change in pain (xˉ = -4.0mm, t= -1.07, p =0.29, 95%CI -11.5, 3.5) or disability (xˉ = -0.3%, t= -0.19, p =0.85, 95%CI -3.5, 2.8) between groups. Within group comparisons revealed clinically meaningful reductions in pain for both Group One (xˉ =-20.9mm, 95%CI -25.7, -16.1) and Group Two (xˉ =-24.9, 95%CI -30.8, -19.0). Conclusion Both exercise programs had similar efficacy in reducing pain. The addition of hip strengthening exercises to a motor control exercise program does not appear to result in improved clinical outcome for pain for individuals with non-specific low back pain.
Resumo:
The use of circular hollow steel members has attracted a great deal of attention during past few years because of having excellent structural properties, aesthetic appearance, corrosion and fire protection capability. However, no one can deny the structural deficiency of such structures due to reduction of strength when they are exposed to severe environmental conditions such as marine environment, cold and hot weather. Hence strengthening and retrofitting of structural steel members is now very imperative. This paper presents the findings of a research program that was conducted to study the bond durability of carbon fibre-reinforced polymer (CFRP) strengthened steel tubular members under cold weather and tested under four-point bending. Six number of CFRP-strengthened specimens and one unstrengthened specimen were considered in this program. The three specimens having sand blasted surface to be strengthened was pre-treated with MBrace primer and other three were remained untreated and then cured under ambient temperature at least four weeks and cold weather (3 C) for three and six months period of time. Quasi-static tests were then performed on beams to failure under four-point bending. The structural response of each specimen was predicted in terms of failure load, mid-span deflection, composite beam behaviour and failure mode. The research outcomes show that the cold weather immersion had an adverse effect on durability of CFRP-strengthened steel structures. Moreover, the epoxy based adhesion promoter was found to enhance the bond durability in plastic range. The analytical models presented in this study were found to be in good agreement in terms of predicting ultimate load and deflection. Finally, design factors are proposed to address the short-terms durability performance under cold weather.
Resumo:
Theoretical accounts suggest that mirror neurons play a crucial role in social cognition. The current study used transcranial-magnetic stimulation (TMS) to investigate the association between mirror neuron activation and facialemotion processing, a fundamental aspect of social cognition, among healthy adults (n = 20). Facial emotion processing of static (but not dynamic) images correlated significantly with an enhanced motor response, proposed to reflect mirror neuron activation. These correlations did not appear to reflect general facial processing or pattern recognition, and provide support to current theoretical accounts linking the mirror neuron system to aspects of social cognition. We discuss the mechanism by which mirror neurons might facilitate facial emotion recognition.
Resumo:
This thesis presents a novel program parallelization technique incorporating with dynamic and static scheduling. It utilizes a problem specific pattern developed from the prior knowledge of the targeted problem abstraction. Suitable for solving complex parallelization problems such as data intensive all-to-all comparison constrained by memory, the technique delivers more robust and faster task scheduling compared to the state-of-the art techniques. Good performance is achieved from the technique in data intensive bioinformatics applications.
Resumo:
The impact of simulation methods for social research in the Information Systems (IS) research field remains low. A concern is our field is inadequately leveraging the unique strengths of simulation methods. Although this low impact is frequently attributed to methodological complexity, we offer an alternative explanation – the poor construction of research value. We argue a more intuitive value construction, better connected to the knowledge base, will facilitate increased value and broader appreciation. Meta-analysis of studies published in IS journals over the last decade evidences the low impact. To facilitate value construction, we synthesize four common types of simulation research contribution: Analyzer, Tester, Descriptor, and Theorizer. To illustrate, we employ the proposed typology to describe how each type of value is structured in simulation research and connect each type to instances from IS literature, thereby making these value types and their construction visible and readily accessible to the general IS community.
Resumo:
National or International Significance Flows of cultural heritage in textual practices are vital to sustaining Indigenous communities - a national and international priority (Commonwealth of Australia, 2011). Indigenous heritage, whether passed on by oral tradition or ubiquitous social media, can be seen as a "conversation between the past and the future" (Fairclough, 2012, p. xv). Indigenous heritage involves appropriating memories within a cultural flow to pass on a spiritual legacy. This presentation reports ethnographic research of social media practices in a small independent Aboriginal school in Southeast Queensland, Australia that is resided over by the Yuggera elders and an Aboriginal principal. Quality of Research The purpose was to rupture existing notions of white literacies in schools, and to deterritorialize the uses of digital media by dominant cultures in the public sphere. Examples of learning experiences included the following: i. Integrating Indigenous language and knowledge into media text production; ii. Classroom visits from Indigenous elders; and iii. Publishing oral histories through digital scrapbooking. The program aligned with the Australian National Curriculum English (ACARA, 2014), which mandates the teaching of multimodal text creation. Data sources included a class set of digital scrapbooks collaboratively created in a preparatory-one primary classroom. The digital scrapbooks combined digitally encoded words, images of material artifacts, and digital music files. A key feature of the writing and digital design task was to retell and digitally display and archive a cultural narrative of significance to the Indigenous Australian community and its memories and material traces of the past for the future. Data analysis of the students' digital stories involved the application of key themes of negotiated, material, and digitally mediated forms of heritage practice. It drew on Australian Indigenous research by Keddie et al. (2013) to guard against the homogenizing of culture that can arise from a focus on a static view of culture. The interpretation of findings located Indigenous appropriation of social media within broader racialized politics that enables Indigenous literacy to be understood as a dynamic, negotiated, and transgenerational flows of practice. It demonstrates that Indigenous children's use of media production reflects "shifting and negotiated identities" in response to changing media environments that can function to sustain Indigenous cultural heritages (Appadurai, 1696, p. xv). Impact on practice, policy or theory The findings are important for teachers at a time when Aboriginal and Torres Strait Islander Histories and Cultures is a cross-curricular policy priority in the Australian Curriculum (ACARA, 2014). The findings show how curriculum policies can be applied to classroom practice in ways that are epistemologically consistent with Indigenous ways of knowing and being. Theoretically, it demonstrates how the children's experiences of culture are layered over time, as successive generations inherit, interweave, and hear others' cultural stories or maps. Practically, recommendations are provided for an approach to appropriating social media in schools that explicitly attends to the dynamic nature of Indigenous practices, negotiated through intercultural constructions and flows, and opening space for a critical anti-racist approach to multimodal text production. Timeliness The research is timely in the context of the accessibility and role of digital and multimodal forms of communication, including for Aboriginal and Torres Strait Islander communities.
Resumo:
Purposes: The first objective was to propose a new model representing the balance level of adults with intellectual and developmental disabilities (IDD) using Principal Components Analysis (PCA); and the second objective was to use the results from the PCA recorded by regression method to construct and validate summative scales of the standardized values of the index, which may be useful to facilitate a balance assessment in adults with IDD. Methods: A total of 801 individuals with IDD (509 males) mean 33.1±8.5 years old, were recruited from Special Olympic Games in Spain 2009 to 2012. The participants performed the following tests: the timed-stand test, the single leg stance test with open and closed eyes, the Functional Reach Test, the Expanded Timed-Get-up-and-Go Test. Data was analyzed using principal components analysis (PCA) with Oblimin rotation and Kaiser normalization. We examined the construct validity of our proposed two-factor model underlying balance for adults with IDD. The scores from PCA were recorded by regression method and were standardized. Results: The Component Plot and Rotated Space indicated that a two-factor solution (Dynamic and Static Balance components) was optimal. The PCA with direct Oblimin rotation revealed a satisfactory percentage of total variance explained by the two factors: 51.6 and 21.4%, respectively. The median score standardized for component dynamic and static of the balance index for adults with IDD is shown how references values. Conclusions: Our study may lead to improvements in the understanding and assessment of balance in adults with IDD. First, it confirms that a two-factor model may underlie the balance construct, and second, it provides an index that may be useful for identifying the balance level for adults with IDD.