988 resultados para polarization-insensitive
Resumo:
Monocytes, macrophages and dendritic cells (DCs) are important mediators of innate immune system, whereas T lymphocytes are the effector cells of adaptive immune responses. DCs play a crucial role in bridging innate and adaptive immunity. Naïve CD4+ Th progenitors (Thp) differentiate to functionally distinct effector T cell subsets including Th1, Th2 and Th17 cells, which while being responsible for specific immune functions have also been implicated in pathological responses, such as autoimmunity, asthma and allergy. The main objective of this thesis is to dissect the signalling networks involved in the IL-4 induced differentiation of two important leukocyte subtypes, Th2 cells and DCs. Gene expression profiling lead to identification of over 200 genes which are differentially expressed during cytokine induced differentiation of human monocytes to DCs or macrophages and which are likely to be essential for the proper biological functions of these cell types. Transcriptome analysis demonstrated the dynamic regulation of gene expression by IL-12 and IL-4 during the initiation of Th cell differentiation, which was partly counteracted by an immunosuppressive cytokine, TGFβ, present in the culture media. Results from RNAi mediated gene knockdown experiments and global gene expression analysis elucidated that SATB1 regulates multiple genes important for Th cell polarization or function as well as may compete with GATA3 for the reciprocal regulation of IL-5 transcription. In conclusion, the results obtained have extended our system-level understanding of the immune cell differentiation processes and provide an excellent basis for the further functional studies which could lead to development of improved therapeutic approaches for a range of immunological conditions.
Resumo:
2,4,6-trinitrotoluene (TNT) is an energetic material that shows scarce crystalline properties that can be improved by addition of 2,2',4,4',6,6'-hexanitrostilbene (HNS) in the crystallization process. HNS is a very important high explosive used in a variety of military, aerospace and industrial formulations owing to its suitable properties. It is an insensitive and thermal stable explosive that can be produced from 2,4,6-trinitrotoluene (TNT). The purpose of this work is the quantitative determination of HNS and TNT in explosives by thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR).
Resumo:
We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging.
Resumo:
There are different concepts in electrochemistry that must be supported by a laboratory practice to better understand their importance in industrial applications. This work reports the procedure for manufacturing an electrodialyzer in series of two or more compartments with easy manipulation. Likewise, it reports the results obtained by using this system in the nitrate elimination from synthetic NaNO3 solutions at different concentrations. Among other results obtained in the electrodialysis of these solutions, the one that stands out is the demonstration of the linear relationship between the limiting current, obtained from the polarization curves, and nitrate concentration. Additionally, implementation of the separation treatment shows that the time of elimination of practically all ionic species depends on their concentration in solution and ranges between 50 and 80 min.
Resumo:
The tribocorrosion behavior of Ti6Al4V alloy was investigated in a Phosphate Buffered Saline (PBS) solution by a reciprocating wear, using alumina ball as the counterface material, at different normal forces and sliding velocities. Dry wear experiments were performed in order to compare with the tribocorrosion experiments at open circuit potential and under anodic polarization. Dry wear induced a superior damage on the counterface, forming larger and shallower wear tracks compared with those experiments performed in PBS solution. The anodic current was increased by wear; however the volume of oxidized metal in tribocorrosion experiments correspond to a relative low percentage of the wear track volume.
Resumo:
Solid solution of iron doped potassium strontium niobate with KSr2(FeNb4)O15-Δ stoichiometry was prepared by high efficiency ball milling method. Structural characterization was carried out by X-ray diffraction. Crystalline structure was analyzed by the Rietveld refinements using the FullProf software. The results showed a tetragonal system with the tetragonal tungsten bronze structure - TTB (a = 12.4631 (2) Å and c = 3.9322 (6) Å, V = 610.78 (2) ų). In this work, the sites occupancy by the K+, Sr2+ and Fe3+ cations on the TTB structure were determined. NbO6 polihedra distortion and its correlation with the theoretical polarization are discussed.
Resumo:
This article describes the use of a projection spectrograph based on an overhead projector for use in classroom demonstrations on light polarization and optical activity. A simple adaptation on a previously developed apparatus allows illustrating several aspects of optical activity, such as circular and linear birefringence, including their wavelength dependence. Specifically, we use the projection spectrograph to demonstrate the optical activity of an aqueous solution of sugar (circular birefringence), of a quartz plate and of an overhead projector transparence film (linear birefringence). A historical survey about the optical activity discovery and the main principles involved is also presented.
Resumo:
The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.
Resumo:
Measurements at high temperature using liquid solutions require special cells and materials which are able to support the temperature and pressure developed inside. The constructed cell was designed to support pressures up to 20 bar, temperatures relatively high up to around 200 ºC, depending on the pressure developed inside the system. It also supports aggressive solutions since its inner wall is made of Teflon. The electrolyte has no contact with the metallic body of the cell. Then, it is supposed that this work represents a great contribution to the electrochemical studies of materials in solutions at high pressure and temperature
Resumo:
This work has compared the surfaces of two different steel samples used as orthopedical implants, classified as ASTM F138 and ISO5832-9, through optical emission spectroscopy, by means of SEM and EDS. The samples (implants) were also submitted to potentiodynamic cyclic polarization in Ringer lactate and NaCl 0.9 M L-1 solutions; ISO5832-9 sample did not show any kind of localized corrosion, but in the case of F138 steel was observed a pit localized corrosion in both solutions. In Ringer lactate solution it was observed a loss of about 63% for nickel and 26% for iron for F138 stell, compared to the initial composition.
Resumo:
This work involved the study of degradation of the herbicide bentazone in aqueous solution by different routes, in order to search a method that generates safe products to the environment. It was tested electrochemical polarization methods involving positive and negative potential, irradiation with UV light and deposition of TiO2 on the electrode surface, seeking a catalytic effect. After different times of degradation, aliquots were removed and the scan of molecular absorption spectrum of UV-Vis was performed. From the spectra decay of bentazone, the kinetics of different processes was accompanied and the rate constants were determined.
Resumo:
It is through the application of an electronic partition approach called Symmetry-Adapted Perturbation Theory (SAPT) that the nature of hydrogen bonds and van der Waals interactions can be unveiled according to the contribution of electrostatic, charge transfer, exchange repulsion, polarization, and dispersion terms. Among these, electrostatic partition governs the formation of the hydrogen bonds, whose energies are arguably high. However, the weakness of the interaction strength is caused by dispersion forces, whose contribution decisively lead to the stabilization of complexes formed via van der Waals interactions.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
Ni–W–P electrodeposits were synthesized in a Hull cell in order to simulate the obtainment under industrial conditions. Complete coverage of panels was accomplished by applying total currents of 1.0 and 2.0 A. Panels obtained with a current of 1.0 A appeared brighter. The best compositional uniformities, as determined by Energy Dispersive Spectrometer (EDS) occurred in the current density ranges of 0.6 to 3.0 A dm−2 and 1.6 to 6.0 A dm−2 obtained with 1.0 and 2.0 A, respectively. However, the best morphological characteristics, as determined by Scanning Electro Microscope (SEM), were observed in those obtained with a total current of 1.0 A. Analysis of corrosion resistance by Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Linear Polarization (PLP) in NaCl have shown significant variations in the amount of corrosion potential, polarization resistance, and even total impedance. The alloys exhibited amorphous character (XRD) and crystallized above 400 °C to Ni and Ni3P phases, and possibly Ni–W, with a subsequent increase in hardness. The results suggest that under industrial conditions, current density variations due to the large and complex geometric shapes of substrates lead to formation of distinct alloys. Furthermore, these materials are potential substitutes for chromium deposits in many applications.
Resumo:
Interest in recovery of valuable components from process streams has increased in recent years. Purpose of biorefinery is to utilize components that otherwise would go to waste. Hemicelluloses, for example, could be utilized in production of many valuable products. One possible way to separate and fractionate hemicelluloses is membrane filtration. In the literature part of this work membrane fouling in filtration processes of pulp and paper process- and wastewaters was investigated. Especially purpose was to find out the possible fouling compounds, after which facilities to remove or modify such components less harmful were studied. In the experimental part different pretreatment methods, mainly to remove or degrade lignin from wood hydrolysate, were studied. In addition, concentration of hemicelluloses and separation from lignin were examined with two ultrafiltration membranes; UFX5 and RC70PP. Changes in feed solution, filtration capacity and fouling of membranes were used to evaluate the effects of pretreatment methods. Changes in hydrolysate composition were observed with different analysis methods. Filtration of hydrolysate proved to be challenging, especially with the UFX5 membrane. The more hydrophilic RC70PP membrane did not seem to be fouled as severely as the UFX5 membrane, according to pure water flux measurements. The UFX5 membrane retained hemicelluloses rather well, but problems arose from rapid flux decline resulting from concentration polarization and fouling of membrane. Most effective pretreatment methods in the case with the UFX5 membrane proved to be prefiltration with the RC70PP membrane, activated carbon adsorption and photocatalytic oxidation using titanium dioxide and UV radiation. An additional experiment with PHW extract showed that pulsed corona discharge treatment degraded lignin quite efficiently and thus improved filtration capacity remarkably, even over six times compared to the filtration with untreated extract.