936 resultados para pitch interpolation
Resumo:
Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.
Resumo:
In der Arbeit werden zunächst die wesentlichsten Fakten über Schiefpolynome wiederholt, der Fokus liegt dabei auf Shift- und q-Shift-Operatoren in Charakteristik Null. Alle für die Arithmetik mit diesen Objekten notwendigen Konzepte und Algorithmen finden sich im ersten Kapitel. Einige der zur Bestimmung von Lösungen notwendigen Daten können aus dem Newtonpolygon, einer den Operatoren zugeordneten geometrischen Figur, abgelesen werden. Die Herleitung dieser Zusammenhänge ist das Thema des zweiten Kapitels der Arbeit, wobei dies insbesondere im q-Shift-Fall in dieser Form neu ist. Das dritte Kapitel beschäftigt sich mit der Bestimmung polynomieller und rationaler Lösungen dieser Operatoren, dabei folgt es im Wesentlichen der Darstellung von Mark van Hoeij. Der für die Faktorisierung von (q-)Shift Operatoren interessanteste Fall sind die sogenannten (q-)hypergeometrischen Lösungen, die direkt zu Rechtsfaktoren erster Ordnung korrespondieren. Im vierten Kapitel wird der van Hoeij-Algorithmus vom Shift- auf den q-Shift-Fall übertragen. Außerdem wird eine deutliche Verbesserung des q-Petkovsek-Algorithmus mit Hilfe der Daten des Newtonpolygons hergeleitet. Das fünfte Kapitel widmet sich der Berechnung allgemeiner Faktoren, wozu zunächst der adjungierte Operator eingeführt wird, der die Berechnung von Linksfaktoren erlaubt. Dann wird ein Algorithmus zur Berechnung von Rechtsfaktoren beliebiger Ordnung dargestellt. Für die praktische Benutzung ist dies allerdings für höhere Ordnungen unpraktikabel. Bei fast allen vorgestellten Algorithmen tritt das Lösen linearer Gleichungssysteme über rationalen Funktionenkörpern als Zwischenschritt auf. Dies ist in den meisten Computeralgebrasystemen nicht befriedigend gelöst. Aus diesem Grund wird im letzten Kapitel ein auf Evaluation und Interpolation basierender Algorithmus zur Lösung dieses Problems vorgestellt, der in allen getesteten Systemen den Standard-Algorithmen deutlich überlegen ist. Alle Algorithmen der Arbeit sind in einem MuPAD-Package implementiert, das der Arbeit beiliegt und eine komfortable Handhabung der auftretenden Objekte erlaubt. Mit diesem Paket können in MuPAD nun viele Probleme gelöst werden, für die es vorher keine Funktionen gab.
Resumo:
Zur Abbildung heterogener Standorteigenschaften und Ertragspotenziale werden zunehmend flächenhafte Daten nachgefragt. Insbesondere für Grünland, das häufig durch ausgeprägte Standortheterogenität gekennzeichnet ist, ergeben sich hohe Anforderungen an die Wiedergabequalität, denn die realen Verhältnisse sollen in praktikabler Weise möglichst exakt abgebildet werden. Außerdem können flächenhafte Daten genutzt werden, um Zusammenhänge zwischen teilflächenspezifischen Standorteigenschaften und Grünlandaspekten detaillierter zu analysieren und bisher nicht erkannte Wechselbeziehungen nachzuweisen. Für mitteleuropäisches Grünland lagen zu Beginn dieser Arbeit derartige räumliche Untersuchungen nicht oder nur in Teilaspekten vor. Diese Arbeit befasste sich mit der Analyse von Wirkungsbeziehungen zwischen Standort- und Grünlandmerkmalen auf einer im Nordhessischen Hügelland (Deutschland) weitgehend praxisüblicher bewirtschafteten 20 ha großen Weidefläche. Erhoben wurden als Standortfaktoren die Geländemorphologie, die Bodentextur, die Grundnährstoffgehalten sowie als Parameter des Grünlandbestandes die botanische Zusammensetzung, der Ertrag und die Qualitätsparameter. Sie wurden sowohl in einem 50 m-Raster ganzflächig, als auch auf drei 50x50 m großen Teilflächen in erhöhter Beprobungsdichte (6,25 m-Rasterweite) aufgenommen. Die relevanten Fragestellungen zielen auf die räumliche und zeitliche Variabilität von Grünlandbestandesparametern innerhalb von Grünlandflächen sowie deren Abhängigkeit von den Standortfaktoren. Ein weiterer Schwerpunkt war die Überprüfung der Frage, ob die reale Variabilität der Zielvariablen durch die Interpolierung der punktuell erfassten Daten wiedergegeben werden kann. Die Beziehungen zwischen Standort- und Grünlandmerkmalen wurden mit monokausalen und multivariaten Ansätzen untersucht. Die Ergebnisse ließen, unabhängig vom Jahreseinfluss, bereits bestimmte Zusammenhänge zwischen botanischer Zusammensetzung und Standort, auch auf dem untersuchten kleinen Maßstab innerhalb der Grünlandfläche, finden. Demzufolge können unterschiedliche Areale abgegrenzt und charakterisiert werden, die als Grundlage für Empfehlungen zur Ausweisung von Arealen zur teilspezifischen Bewirtschaftung erarbeitet wurden. Die Validierung der interpolierten Daten zeigte, dass die 50-m Rasterbeprobung nur eine begrenzte Wiedergabe der räumlichen Variabilität ermöglicht. Inwieweit derartige Beziehungen quantitativ genauer beschreibbar sind, bleibt auf Grund der verbliebenen unerklärten Varianz im Datensatz dieser Studie offen.
Resumo:
Im Rahmen dieser Arbeit werden Modellbildungsverfahren zur echtzeitfähigen Simulation wichtiger Schadstoffkomponenten im Abgasstrom von Verbrennungsmotoren vorgestellt. Es wird ein ganzheitlicher Entwicklungsablauf dargestellt, dessen einzelne Schritte, beginnend bei der Ver-suchsplanung über die Erstellung einer geeigneten Modellstruktur bis hin zur Modellvalidierung, detailliert beschrieben werden. Diese Methoden werden zur Nachbildung der dynamischen Emissi-onsverläufe relevanter Schadstoffe des Ottomotors angewendet. Die abgeleiteten Emissionsmodelle dienen zusammen mit einer Gesamtmotorsimulation zur Optimierung von Betriebstrategien in Hybridfahrzeugen. Im ersten Abschnitt der Arbeit wird eine systematische Vorgehensweise zur Planung und Erstellung von komplexen, dynamischen und echtzeitfähigen Modellstrukturen aufgezeigt. Es beginnt mit einer physikalisch motivierten Strukturierung, die eine geeignete Unterteilung eines Prozessmodells in einzelne überschaubare Elemente vorsieht. Diese Teilmodelle werden dann, jeweils ausgehend von einem möglichst einfachen nominalen Modellkern, schrittweise erweitert und ermöglichen zum Abschluss eine robuste Nachbildung auch komplexen, dynamischen Verhaltens bei hinreichender Genauigkeit. Da einige Teilmodelle als neuronale Netze realisiert werden, wurde eigens ein Verfah-ren zur sogenannten diskreten evidenten Interpolation (DEI) entwickelt, das beim Training einge-setzt, und bei minimaler Messdatenanzahl ein plausibles, also evidentes Verhalten experimenteller Modelle sicherstellen kann. Zum Abgleich der einzelnen Teilmodelle wurden statistische Versuchs-pläne erstellt, die sowohl mit klassischen DoE-Methoden als auch mittels einer iterativen Versuchs-planung (iDoE ) generiert wurden. Im zweiten Teil der Arbeit werden, nach Ermittlung der wichtigsten Einflussparameter, die Model-strukturen zur Nachbildung dynamischer Emissionsverläufe ausgewählter Abgaskomponenten vor-gestellt, wie unverbrannte Kohlenwasserstoffe (HC), Stickstoffmonoxid (NO) sowie Kohlenmono-xid (CO). Die vorgestellten Simulationsmodelle bilden die Schadstoffkonzentrationen eines Ver-brennungsmotors im Kaltstart sowie in der anschließenden Warmlaufphase in Echtzeit nach. Im Vergleich zur obligatorischen Nachbildung des stationären Verhaltens wird hier auch das dynami-sche Verhalten des Verbrennungsmotors in transienten Betriebsphasen ausreichend korrekt darge-stellt. Eine konsequente Anwendung der im ersten Teil der Arbeit vorgestellten Methodik erlaubt, trotz einer Vielzahl von Prozesseinflussgrößen, auch hier eine hohe Simulationsqualität und Ro-bustheit. Die Modelle der Schadstoffemissionen, eingebettet in das dynamische Gesamtmodell eines Ver-brennungsmotors, werden zur Ableitung einer optimalen Betriebsstrategie im Hybridfahrzeug ein-gesetzt. Zur Lösung solcher Optimierungsaufgaben bieten sich modellbasierte Verfahren in beson-derer Weise an, wobei insbesondere unter Verwendung dynamischer als auch kaltstartfähiger Mo-delle und der damit verbundenen Realitätsnähe eine hohe Ausgabequalität erreicht werden kann.
Resumo:
Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.
Resumo:
We present a new method for rendering novel images of flexible 3D objects from a small number of example images in correspondence. The strength of the method is the ability to synthesize images whose viewing position is significantly far away from the viewing cone of the example images ("view extrapolation"), yet without ever modeling the 3D structure of the scene. The method relies on synthesizing a chain of "trilinear tensors" that governs the warping function from the example images to the novel image, together with a multi-dimensional interpolation function that synthesizes the non-rigid motions of the viewed object from the virtual camera position. We show that two closely spaced example images alone are sufficient in practice to synthesize a significant viewing cone, thus demonstrating the ability of representing an object by a relatively small number of model images --- for the purpose of cheap and fast viewers that can run on standard hardware.
Resumo:
We discuss a variety of object recognition experiments in which human subjects were presented with realistically rendered images of computer-generated three-dimensional objects, with tight control over stimulus shape, surface properties, illumination, and viewpoint, as well as subjects' prior exposure to the stimulus objects. In all experiments recognition performance was: (1) consistently viewpoint dependent; (2) only partially aided by binocular stereo and other depth information, (3) specific to viewpoints that were familiar; (4) systematically disrupted by rotation in depth more than by deforming the two-dimensional images of the stimuli. These results are consistent with recently advanced computational theories of recognition based on view interpolation.
Resumo:
To recognize a previously seen object, the visual system must overcome the variability in the object's appearance caused by factors such as illumination and pose. Developments in computer vision suggest that it may be possible to counter the influence of these factors, by learning to interpolate between stored views of the target object, taken under representative combinations of viewing conditions. Daily life situations, however, typically require categorization, rather than recognition, of objects. Due to the open-ended character both of natural kinds and of artificial categories, categorization cannot rely on interpolation between stored examples. Nonetheless, knowledge of several representative members, or prototypes, of each of the categories of interest can still provide the necessary computational substrate for the categorization of new instances. The resulting representational scheme based on similarities to prototypes appears to be computationally viable, and is readily mapped onto the mechanisms of biological vision revealed by recent psychophysical and physiological studies.
Resumo:
It is proposed that subjective contours are an artifact of the perception of natural three-dimensional surfaces. A recent theory of surface interpolation implies that "subjective surfaces" are constructed in the visual system by interpolation between three-dimensional values arising from interpretation of a variety of surface cues. We show that subjective surfaces can take any form, including singly and doubly curved surfaces, as well as the commonly discussed fronto-parallel planes. In addition, it is necessary in the context of computational vision to make explicit the discontinuities, both in depth and in surface orientation, in the surfaces constructed by interpolation. It is proposed that subjective surfaces and subjective contours are demonstrated. The role played by figure completion and enhanced brightness contrast in the determination of subjective surfaces is discussed. All considerations of surface perception apply equally to subjective surfaces.
Resumo:
In this paper, a new methodology for predicting fluid free surface shape using Model Order Reduction (MOR) is presented. Proper Orthogonal Decomposition combined with a linear interpolation procedure for its coefficient is applied to a problem involving bubble dynamics near to a free surface. A model is developed to accurately and efficiently capture the variation of the free surface shape with different bubble parameters. In addition, a systematic approach is developed within the MOR framework to find the best initial locations and pressures for a set of bubbles beneath the quiescent free surface such that the resultant free surface attained is close to a desired shape. Predictions of the free surface in two-dimensions and three-dimensions are presented.
Resumo:
Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging. When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positive variables, has no straightforward way to build consistent and optimal confidence intervals for estimates. These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure
Resumo:
La tecnología LiDAR (Light Detection and Ranging), basada en el escaneado del territorio por un telémetro láser aerotransportado, permite la construcción de Modelos Digitales de Superficie (DSM) mediante una simple interpolación, así como de Modelos Digitales del Terreno (DTM) mediante la identificación y eliminación de los objetos existentes en el terreno (edificios, puentes o árboles). El Laboratorio de Geomática del Politécnico de Milán – Campus de Como- desarrolló un algoritmo de filtrado de datos LiDAR basado en la interpolación con splines bilineares y bicúbicas con una regularización de Tychonov en una aproximación de mínimos cuadrados. Sin embargo, en muchos casos son todavía necesarios modelos más refinados y complejos en los cuales se hace obligatorio la diferenciación entre edificios y vegetación. Este puede ser el caso de algunos modelos de prevención de riesgos hidrológicos, donde la vegetación no es necesaria; o la modelización tridimensional de centros urbanos, donde la vegetación es factor problemático. (...)
Resumo:
The Digital Elevations Models represent an elemtary space information for the study of the relief forms. The obtaining of models of great resolution implies a greater precision and therefore a greater apporach to the reality of the terrestrial morphology. (...)
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation
Resumo:
La descripción de procesos sociales es una de las opciones más significativas para que desde los ejercicios académicos se puedan desarrollar investigaciones. En el presente trabajo el autor desde las herramientas conceptuales, procedimentales, metodológicas y sociojurídicas realizó el análisis de dos modelos de mediación como mecanismos para tratar conflictos comunitarios. Por un lado el Modelo Relacional Simbólico (MRS), de otro el modelo de mediación comunitaria campesina (MMCC) que históricamente ha existido en la Región Rural del Alto Sumapaz. Del anterior análisis se pudo establecer un diálogo que permitió concluir que los dos modelos son procedimientos que han evolucionado en contextos tan diferentes como complejos. Su implementación antes que replicarla es necesario estudiarla más en profundidad desde cada uno de sus contextos, sin la intención fundamental de incidir sobre los mismos y mucho menos sobre los campos específicos en donde coexistes socialmente. La reconstrucción del discurso sumapaceño como eje central de la investigación giró en torno al reconocimiento y exaltación de los elementos y principios fundamentales del modelo de mediación campesina. Esto se pudo construir a partir de entrevistas y desde el diseño cualitativo de un grupo de discusión que dio cuenta del sistema de justicia alternativa existente. Finalmente, el estudio académico durante la Maestría en Mediación Familiar y Comunitaria, permitió hallar diferentes construcciones argumentativas que para la presente investigación lograron aportar elementos críticos en campos como los mecanismos alternativos de transformación de conflictos, la justicia comunitaria, el pluralismo jurídico, la mediación y por supuesto al modelo relacional simbólico (MRS).