899 resultados para operational calculus
Resumo:
With daily commercial and social activity in cities, regulation of train service in mass rapid transit railways is necessary to maintain service and passenger flow. Dwell-time adjustment at stations is one commonly used approach to regulation of train service, but its control space is very limited. Coasting control is a viable means of meeting the specific run-time in an inter-station run. The current practice is to start coasting at a fixed distance from the departed station. Hence, it is only optimal with respect to a nominal operational condition of the train schedule, but not the current service demand. The advantage of coasting can only be fully secured when coasting points are determined in real-time. However, identifying the necessary starting point(s) for coasting under the constraints of current service conditions is no simple task as train movement is governed by a large number of factors. The feasibility and performance of classical and heuristic searching measures in locating coasting point(s) is studied with the aid of a single train simulator, according to specified inter-station run times.
Resumo:
Executive summary Objective: The aims of this study were to identify the impact of Pandemic (H1N1) 2009 Influenza on Australian Emergency Departments (EDs) and their staff, and to inform planning, preparedness, and response management arrangements for future pandemics, as well as managing infectious patients presenting to EDs in everyday practice. Methods This study involved three elements: 1. The first element of the study was an examination of published material including published statistics. Standard literature research methods were used to identify relevant published articles. In addition, data about ED demand was obtained from Australian Government Department of Health and Ageing (DoHA) publications, with several state health departments providing more detailed data. 2. The second element of the study was a survey of Directors of Emergency Medicine identified with the assistance of the Australasian College for Emergency Medicine (ACEM). This survey retrieved data about demand for ED services and elicited qualitative comments on the impact of the pandemic on ED management. 3. The third element of the study was a survey of ED staff. A questionnaire was emailed to members of three professional colleges—the ACEM; the Australian College of Emergency Nursing (ACEN); and the College of Emergency Nursing Australasia (CENA). The overall response rate for the survey was 18.4%, with 618 usable responses from 3355 distributed questionnaires. Topics covered by the survey included ED conditions during the (H1N1) 2009 influenza pandemic; information received about Pandemic (H1N1) 2009 Influenza; pandemic plans; the impact of the pandemic on ED staff with respect to stress; illness prevention measures; support received from others in work role; staff and others’ illness during the pandemic; other factors causing ED staff to miss work during the pandemic; and vaccination against Pandemic (H1N1) 2009 Influenza. Both qualitative and quantitative data were collected and analysed. Results: The results obtained from Directors of Emergency Medicine quantifying the impact of the pandemic were too limited for interpretation. Data sourced from health departments and published sources demonstrated an increase in influenza-like illness (ILI) presentations of between one and a half and three times the normal level of presentations of ILIs. Directors of Emergency Medicine reported a reasonable level of preparation for the pandemic, with most reporting the use of pandemic plans that translated into relatively effective operational infection control responses. Directors reported a highly significant impact on EDs and their staff from the pandemic. Growth in demand and related ED congestion were highly significant factors causing distress within the departments. Most (64%) respondents established a ‘flu clinic’ either as part of Pandemic (H1N1) 2009 Influenza Outbreak in Australia: Impact on Emergency Departments. the ED operations or external to it. They did not note a significantly higher rate of sick leave than usual. Responses relating to the impact on staff were proportional to the size of the colleges. Most respondents felt strongly that Pandemic (H1N1) 2009 Influenza had a significant impact on demand in their ED, with most patients having low levels of clinical urgency. Most respondents felt that the pandemic had a negative impact on the care of other patients, and 94% revealed some increase in stress due to lack of space for patients, increased demand, and filling staff deficits. Levels of concern about themselves or their family members contracting the illness were less significant than expected. Nurses displayed significantly higher levels of stress overall, particularly in relation to skill-mix requirements, lack of supplies and equipment, and patient and patients’ family aggression. More than one-third of respondents became ill with an ILI. Whilst respondents themselves reported taking low levels of sick leave, respondents cited difficulties with replacing absent staff. Ranked from highest to lowest, respondents gained useful support from ED colleagues, ED administration, their hospital occupational health department, hospital administration, professional colleges, state health department, and their unions. Respondents were generally positive about the information they received overall; however, the volume of information was considered excessive and sometimes inconsistent. The media was criticised as scaremongering and sensationalist and as being the cause of many unnecessary presentations to EDs. Of concern to the investigators was that a large proportion (43%) of respondents did not know whether a pandemic plan existed for their department or hospital. A small number of staff reported being redeployed from their usual workplace for personal risk factors or operational reasons. As at the time of survey (29 October –18 December 2009), 26% of ED staff reported being vaccinated against Pandemic (H1N1) 2009 Influenza. Of those not vaccinated, half indicated they would ‘definitely’ or ‘probably’ not get vaccinated, with the main reasons being the vaccine was ‘rushed into production’, ‘not properly tested’, ‘came out too late’, or not needed due to prior infection or exposure, or due to the mildness of the disease. Conclusion: Pandemic (H1N1) 2009 Influenza had a significant impact on Australian Emergency Departments. The pandemic exposed problems in existing plans, particularly a lack of guidelines, general information overload, and confusion due to the lack of a single authoritative information source. Of concern was the high proportion of respondents who did not know if their hospital or department had a pandemic plan. Nationally, the pandemic communication strategy needs a detailed review, with more engagement with media networks to encourage responsible and consistent reporting. Also of concern was the low level of immunisation, and the low level of intention to accept vaccination. This is a problem seen in many previous studies relating to seasonal influenza and health care workers. The design of EDs needs to be addressed to better manage infectious patients. Significant workforce issues were confronted in this pandemic, including maintaining appropriate staffing levels; staff exposure to illness; access to, and appropriate use of, personal protective equipment (PPE); and the difficulties associated with working in PPE for prolonged periods. An administrative issue of note was the reporting requirement, which created considerable additional stress for staff within EDs. Peer and local support strategies helped ensure staff felt their needs were provided for, creating resilience, dependability, and stability in the ED workforce. Policies regarding the establishment of flu clinics need to be reviewed. The ability to create surge capacity within EDs by considering staffing, equipment, physical space, and stores is of primary importance for future pandemics.
Resumo:
Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
The paper explores the way in which the life of concrete sleepers can be dramatically affected by two important factors, namely impact forces and fatigue cycles. Drawing on the very limited experimental and field data currently available about these two factors, the paper describes detailed simulations of sleepers in a heavy haul track in Queensland Australia over a period of 100 years. The simulation uses real wheel/rail impact force records from that track, together with data on static bending tests of similar sleepers and preliminary information on their impact vs static strength. The simulations suggest that despite successful performance over many decades, large unplanned replacement costs could be imminent, especially considering the increasingly demanding operational conditions sleepers have sustained over their life. The paper also discusses the key factors track owners need to consider in attempting to plan for these developments.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
Most infrastructure project developments are complex in nature, particularly in the planning phase. During this stage, many vague alternatives are tabled - from the strategic to operational level. Human judgement and decision making are characterised by biases, errors and the use of heuristics. These factors are intangible and hard to measure because they are subjective and qualitative in nature. The problem with human judgement becomes more complex when a group of people are involved. The variety of different stakeholders may cause conflict due to differences in personal judgements. Hence, the available alternatives increase the complexities of the decision making process. Therefore, it is desirable to find ways of enhancing the efficiency of decision making to avoid misunderstandings and conflict within organisations. As a result, numerous attempts have been made to solve problems in this area by leveraging technologies such as decision support systems. However, most construction project management decision support systems only concentrate on model development and neglect fundamentals of computing such as requirement engineering, data communication, data management and human centred computing. Thus, decision support systems are complicated and are less efficient in supporting the decision making of project team members. It is desirable for decision support systems to be simpler, to provide a better collaborative platform, to allow for efficient data manipulation, and to adequately reflect user needs. In this chapter, a framework for a more desirable decision support system environment is presented. Some key issues related to decision support system implementation are also described.
Resumo:
The track allocation problem (TAP) at a multi-track, multi-platform mainline railway station is defined by the station track layout and service timetable, which implies combinations of spatial and temporal conflicts. Feasible solutions are available from either traditional planning or advanced intelligent searching methods and their evaluations with respect to operational requirements are essential for the operators. To facilitate thorough analysis, a timed Coloured Petri Nets (CPN) model is presented here to encapsulate the inter-relationships of the spatial and temporal constraints in the TAP.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
To maximise the capacity of the rail lineand provide a reliable service for pas-sengers throughout the day, regulation of train service to maintain steady service headway is es-sential. In most current metro systems, train usually starts coasting at a fixed distance from the departed station to achieve service regulation. However, this approach is only effective with re-spect to a nominal operational condition of train schedule but not necessarily the current service demand. Moreover, it is not simply to identify the necessary starting point for coasting under the run time constraints of current service conditions since train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an ap-plication of classical measures to search for the appropriate coasting point to meet a specified inter-station run time and they can be integrated in the on-board Automatic Train Operation (ATO) system and have the potential for on-line implementation in making a set of coasting command decisions.
Resumo:
A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.
Resumo:
We describe the introduction, service growth, benefits and holistic support approach of a centrally supported universitywide online survey tool for researchers at QUT. The online survey service employs the Key Survey software, and has grown into a significant service for QUT researchers since being introduced in 2009. Key benefits of the approach include the ability of QUT to handle important issues relating to data such as security, privacy, integrity, archiving & disposal. The service also incorporates a workflow process that enhances the institution’s ability to ensure survey quality control through controlled approval and pilot testing before any survey is widely released. An important issue is that a tool like this can make it very easy to do very poor research very quickly while creating lots of data, due to the absence of a rigorous methodology designed to reduce errors and collect accurate, comprehensive, timely data. With this in mind, a holistic approach to service provision and support has been taken, which has included the introduction of an integrated system of seminars, tools and workshops to get researchers thinking about the quality of their research while becoming operational quickly. The system of seminars, workshops, checks and approvals we have put in place at QUT is designed to ensure better quality outcomes for QUT’s research and the individual researchers concerned.
Resumo:
In Australia rural research and development corporations and companies expended over $AUS500 million on agricultural research and development. A substantial proportion of this is invested in R&D in the beef industry. The Australian beef industry exports almost $AUS5billionof product annually and invest heavily in new product development to improve the beef quality and improve production efficiency. Review points are critical for effective new product development, yet many research and development bodies, particularly publicly funded ones, appear to ignore the importance of assessing products prior to their release. Significant sums of money are invested in developing technological innovations that have low levels and rates of adoption. The adoption rates could be improved if the developers were more focused on technology uptake and less focused on proving their technologies can be applied in practice. Several approaches have been put forward in an effort to improve rates of adoption into operational settings. This paper presents a study of key technological innovations in the Australian beef industry to assess the use of multiple criteria in evaluating the potential uptake of new technologies. Findings indicate that using multiple criteria to evaluate innovations before commercializing a technology enables researchers to better understand the issues that may inhibit adoption.