977 resultados para numerical scheme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the classical problem of sequential detection of change in a distribution (from hypothesis 0 to hypothesis 1), where the fusion centre receives vectors of periodic measurements, with the measurements being i.i.d. over time and across the vector components, under each of the two hypotheses. In our problem, the sensor devices ("motes") that generate the measurements constitute an ad hoc wireless network. The motes contend using a random access protocol (such as CSMA/CA) to transmit their measurement packets to the fusion centre. The fusion centre waits for vectors of measurements to accumulate before taking decisions. We formulate the optimal detection problem, taking into account the network delay experienced by the vectors of measurements, and find that, under periodic sampling, the detection delay decouples into network delay and decision delay. We obtain a lower bound on the network delay, and propose a censoring scheme, where lagging sensors drop their delayed observations in order to mitigate network delay. We show that this scheme can achieve the lower bound. This approach is explored via simulation. We also use numerical evaluation and simulation to study issues such as: the optimal sampling rate for a given number of sensors, and the optimal number of sensors for a given measurement rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an algorithm for control of line side voltage of a voltage source inverter upto six-step mode. This is a modified version of an existing overmodulation algorithm. The modified algorithm maintains proportionality between the reference voltage and the output fundamental voltage, and also reduces the computational effort required for implementation, while resulting in a marginally higher harmonic distortion. An estimation method is proposed for calculation of lower order ripple current. This estimation method is applied to a sensorless vector controlled induction motor drive to improve the performance of the drive during overmodulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the recent progresses in spectral finite element modeling of complex structures and its application in real-time structural health monitoring system based on sensor-actuator network and near real-time computation of Damage Force Indicator (DFI) vector. A waveguide network formalism is developed by mapping the original variational problem into the variational problem involving product spaces of 1D waveguides. Numerical convergence is studied using a h()-refinement scheme, where is the wavelength of interest. Computational issues towards successful implementation of this method with SHM system are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental studies on a compact trapped vortex combustor indicate that cavity injection strategies play a major role on flame stability. Detailed experiments indicate that blow-out occurs for a certain range of cavity air flow velocities. An unsteady RANS-based reacting flow simulation tool has been utilized to study the basic dynamics of cavity vortex for various flow conditions. The phenomenon of flame blow-out at certain intermediate cavity air velocities is explained on the basis of transition from a cavity-stabilized mode to an opposed flow stagnation mode. A novel strategy is proposed for achieving flame stability at all conditions. This involves using a flow guide vane in the path of the main flow to direct a portion of the main flow into the cavity. This seems to result in a desirable dual vortex structure, i.e., a small clockwise vortex behind the vane and large counterclockwise vortex in the cavity. Experimental results show stable flame at all flow conditions with the flow guide vane, and pressure drop is estimated to be within acceptable limits. Cold flow simulations show self-similar velocity profiles for a range of main inlet velocities, and high reverse velocity ratios (-0.3) are observed. Such a high-velocity ratio in the reverse flow shear layer profile leads to enhanced production of turbulence imperative to compact combustors. Reacting flow simulations show even higher reverse velocity ratios (above -0.7) due to flow acceleration. The flame is observed to be stable, even though minor shear layer oscillations are present in the form of vortex shedding. Self-similarity is also observed in reacting flow temperature profiles at combustor exit over the entire range of the mainstream velocity. This indicates that the present configuration holds a promise of delivering robust performance invariant of the flow operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the time‐domain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete time‐domain simulation, which makes use of the method of characteristics.