973 resultados para meat and bone meal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the bone mineral density (BMD) and bone mineral content (BMC) of female adolescents in use of standard low-dose combined oral contraceptives (COC) (EE 20 mcg/ Desogestrel 150 mcg) for a one-year period and to compare results against healthy controls matched for age and gender not in use of COC. Methods: A prospective, longitudinal study was conducted.Fifty adolescents, 12 to 20 years of age, were divided into a COC user group (n 35) and a control group (n 15) and submitted to a Bone Densitometry scan using dual-energy X-ray absorptiometry (DXA) at study inclusion and again at 12-month follow-up. Results: Results showed no statistically significant differences between the COC user and control groups at the initial moment. However, at 12-month follow-up, COC users showed negative mean percentage variation between initial and follow-up values for lumbar spine BMD and BMC of -1.09% and -1.58%, respectively, whereas controls had positive variations of +12.44% and +15.87%, respectively. Thus, the adolescents in use of COC showed a loss, albeit slight, in bone mass whereas the control group showed an increase. Conclusions: The low dose COC assessed (EE 20 mcg/Desogestrel 150 mcg) appeared to negatively affect the process of bone mass acquisition which occurs during adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Low dose combined oral contraceptives (COC) can interfere in bone mass acquisition during adolescence. To evaluate bone mineral density (BMD) and bone mineral content (BMC) in female adolescents taking a standard low-dose (EE 20 µg/Desogestrel 150 µg) combination oral contraceptive (COC) over a one-year period and compare with healthy adolescents from the same age group not taking COCs.Methods A non-randomised parallel control study with one-year follow-up. Sixty-seven adolescents from 12 to 20 years of age, divided into COC users (n = 41) taking 20 µg EE/150 µg Desogestrel and non-user controls (n = 26), were evaluated through bone densitometry examinations at baseline and 12 months later. Comparisons between groups at study start was done through the Mann-Whitney test with significance level fixed at 5% or corresponding p value; comparisons between groups at study start and 12 months later used variations in median percentages for bone mass variables.Results COC users presented low bone mass acquisition in the lumbar spine and BMD and BMC median variations between baseline and at 12 months of 2.07% and +1.57% respectively whereas the control group presented variations of +12.16% and +16.84% for BMD and BMC, respectively, over the same period. The total body BMD and BMC presented similar evolution during the study in both groups. Statistical significance (pConclusion The use of a low COC dose (EE 20 µg/Desogestrel 150 µg) was associated to lower bone mass acquisition in adolescents during the study period.Trial registration: (Register Number):RBR-5 h9b3c

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most significant cetacean trade items until commercial whaling all but ceased in the 1990s (aside from scientific exchanges of tissues etc.) were meat and blubber from baleen whales for human consumption. Since then, live dolphins and 'small' whales for display (and to some extent for research, military use, and 'therapy') have become the most significant cetacean 'products' in international trade. Trade in live cetaceans is presently dominated by bottlenose dolphins (Tursiops spp.), beluga whales (Debhinapterns leucas) and to a lesser extent killer whales (Orcinus orca) (Fisher and Reeves 2005). In the past, most of the dolphins in trade were common bottlenose dolphins (Tursiops truncatus) originating in the United States, Mexico and the Black Sea, but since the 1980s the United States has essentially stopped its capture-for-export activities and in 2001Mexico implemented a moratorium on live-captures. The source countries for dolphins in trade are now geographically diverse, but Cuba and Japan are currently major source nations for common bottlenose dolphins. Russia is the only current source for belugas. Russia and Japan have become the main potential sources for killer whales since Iceland ceased exporting them in the 1980s or early 1990s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended excessive alcohol use causes changes in bone tissue, thus affecting osteogenesis. The objective of this study was to evaluate if demineralized bone matrix (Gen-ox (R)) associated with bone morphogenetic protein (Gen-pro (R)) changes bone neoformation in rats submitted to experimental alcoholism. Forty male rats (Rattus norvegicus) were separated into 2 groups of 20 animals each: Group E1, which received ethyl alcohol at 25% and had the surgical cavity filled in only with blood clot; and Group E2. which received ethyl alcohol at 25% and had the surgical cavity filled in with demineralized bovine cortical bone associated with bone morphogenetic protein. The animals were submitted to a three-week period of gradual adaptation to alcohol, and then continued receiving alcohol at 25% for 90 days, when the surgical cavity was made. After the surgery, the animals continued consuming alcohol until reaching the sacrifice periods of 10, 20, 40, and 60 days, when the tibias were removed for histological processing. Results showed that surgical cavity repair and bone marrow reorganization occurred faster in Group E1 than in Group E2. At the end of the experiment, it was observed that animals in Group E2 had thick bony trabeculae surrounding the implanted material particles and a small area of connective tissue in the surface region. In conclusion, the implanted material did not accelerate bone neoformation, rather it served as a structure for osteogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective in this experiment was to determine the effects of feeding diets with canola, sunflower or castor oils on intake, nutrient apparent digestibility and ruminal constituents of crossbred Dorper x Santa Ines sheep. Four rumen-cannulated animals of 90.2 +/- 11.4 kg average body weight were assigned to a 4 x 4 latin square. Animals remained individually in cages for the metabolism assay and were fed diets containing roughage at 500 g/kg and concentrate based on ground corn and soybean meal also at 500 g/kg. No oil was added to the control diet, whereas the others had canola, sunflower or castor oils at 30 g/kg (DM basis). There was no difference for the intake of DM and nutrients, except for ether extract, which was greater when animals received oil. The digestibility coefficients of dry matter, organic matter, crude protein, non-fiber carbohydrates and neutral detergent fiber were not changed; however, the addition of oil increased the ether extract digestibility. The values of total digestible nutrients (TDN, g/kg of DM), digestible energy (DE, Mcal/kg of DM), TDN intake and DE intake also did not change with the addition of lipids. Concerning the ruminal constituents, the addition of vegetable oils reduced the concentrations of acetate, butyrate and total short-chain fatty acids. Adding canola, sunflower or castor oils at 30 g/kg in diets with 500 g roughage/kg and 500 g concentrate/kg does not impair the intake or digestibility of nutrients in sheep, although it reduces the concentration of short-chain fatty acids in the rumen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years). METHODS: The following body composition measurements were collected (using bone densitometry measurements): fat percentage (% fat), tissue (g), fat (g), lean mass (g), bone mineral content (g), and bone mineral density (g/cm(2)). In addition, the following anthropometric measurements were collected: body mass (kg), height (cm), length of the trunk-cephalic region (cm), length of the lower limbs (cm) and length of the upper limbs (cm). The following indices were calculated: body mass index (kg/m(2)), waist-hip ratio and the support base (cm 2). Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male) height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the osteoblastic activity of cells derived from the midpalatal suture upon treatment with low-level laser therapy (LLLT) after rapid maxillary expansion (RME). A total of 30 rats were divided into two groups: experimental I (15 rats with RME without LLLT) and experimental II (15 rats with RME + LLLT). The rats were euthanized at 24 h, 48 h, and 7 days after RME, when the osteoblastic cells derived from the rats' midpalatal suture were explanted. These cells were cultured for periods up to 17 days, and then in vitro osteogenesis parameters and gene expression markers were evaluated. The cellular doubling time in the proliferative stage (3-7 days) was decreased in cultured cells harvested from the midpalatal suture at 24 and 48 h after RME + LLLT, as indicated by the increased growth of the cells in a culture. Alkaline phosphatase activity at days 7 and 14 of the culture was increased by LLLT in cells explanted from the midpalatal suture at 24 and 48 h and 7 days after RME. The mineralization at day 17 was increased by LLLT after RME in all periods. Results from the real-time PCR demonstrated that cells harvested from the LLLT after RME group showed higher levels of ALP, Runx2, osteocalcin, type I collagen, and bone sialoprotein mRNA than control cells. More pronounced effects on ALP activity, mineralization, and gene expression of bone markers were observed at 48 h after RME and LLLT. These results indicate that the LLLT applied after RME is able to increase the proliferation and the expression of an osteoblastic phenotype in cells derived from the midpalatal suture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Develop a model that allowed the study of bone regeneration in infection conditions. Method: A 15 mm defect was surgically created in the rabbit ulna and inoculated with 5x10(8) colony-forming units (CFU) of S. aureus. Surgical debridement was performed two weeks after and systemic gentamicin was administered for four weeks. Animals were followed up to 12 weeks to evaluate infection control and bone regeneration. Result: Bone regeneration was inferior to 25% of the defect in radiological and histological analysis. Conclusion: Infected bone defect of 15 mm in the rabbit ulna was unable to achieve full regeneration without further treatment. Level of Evidence V, Experimental Study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate the effect of Si addition on a nanometer-scale roughness Ca and P implant surfaces in a canine tibia model by biomechanical and histomorphometric evaluations. Material and methods: The implant surfaces comprised a resorbable media CaP microblasted (control) and a CaP resorbable media + silica-boost microblasted (experimental) surfaces. Surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and optical interferometry (IFM) down to the nanometric level. The animal model involved the bilateral placement of control (n = 24) and experimental surface (n = 24) implants along the proximal tibiae of six dogs, remaining in vivo for 2 or 4 weeks. After euthanization, half of the specimens were torquedto- interface failure, and the other half was subjected to histomorphologic and bone-to-implant contact (BIC) evaluation. Torque and BIC statistical evaluation was performed by the Friedman test at 95% level of significance, and comparisons between groups was performed by the Dunn test. Results: IFM and SEM observations depicted comparable roughness parameters for both implant surfaces on the micrometer and nanometer scales. XPS analysis revealed similar chemical composition, except for the addition of Si on the experimental group. Torque-to-interface failure and BIC mean values showed no significant differences (P = 0.25 and 0.51, respectively) at both 2- and 4-week evaluation points for experimental and control groups. Early bone healing histomorphologic events were similar between groups. Conclusions: The experimental surface resulted in not significantly different biomechanical fixation and BIC relative to control. Both surfaces were biocompatible and osseoconductive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% beta-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Several implant surfaces are being developed, some in the nanoscale level. In this study, two different surfaces had their early healing properties compared in context of circumferential defects of various widths. Material and methods Six dogs had the mandibular premolars extracted. After 8weeks, four implants were placed equicrestally in each side. One acted as control, while the others were inserted into sites with circumferential defects of 1.0, 1.5 and 2.0mm wide and 5mm deep. A nano-modified surface was used on one side and a micro-rough on the other. Bone markers were administered on the third day after implant placement and then after 1, 2, 4weeks to investigate the bone formation dynamic through fluorescence analysis. Ground sections were prepared from 8-week healing biopsies and histomorphometry was performed. Results The fluorescence evaluation of the early healing showed numerically better results for the nano-modified group; however this trend was not followed by the histomorphometric evaluation. A non-significant numerical superiority of the micro-rough group was observed in terms of vertical bone apposition, defect bone fill, bone-to-implant contact and bone density. In the intra-group analysis, the wider defects showed the worse results while the control sites showed the best results for the different parameters, but without statistical relevance. Conclusion Both surfaces may lead to complete fill of circumferential defects, but the gap width has to be considered as a challenge. The nano-scale modification was beneficial in the early stages of bone healing, but the micro-rough surface showed numerical better outcomes at the 8-week final period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To compare the biomechanical fixation and histomorphometric parameters between two implant surfaces: non-washed resorbable blasting media (NWRBM) and alumina-blasted/acid-etched (AB/AE), in a dog model. Material and methods: The surface topography was assessed by scanning electron microscopy, optical interferometry and chemistry by X-ray photoelectron spectroscopy (XPS). Six beagle dogs of similar to 1.5 years of age were utilized and each animal received one implant of each surface per limb (distal radii sites). After a healing period of 3 weeks, the animals were euthanized and half of the implants were biomechanically tested (removal torque) and the other half was referred to nondecalcified histology processing. Histomorphometric analysis considered bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Following data normality check with the Kolmogorov-Smirnov test, statistical analysis was performed by paired t-tests at 95% level of significance. Results: Surface roughness parameters Sa (average surface roughness) and Sq (mean root square of the surface) were significantly lower for the NWRBM compared with AB/ AE. The XPS spectra revealed the presence of Ca and P in the NWRBM. While no significant differences were observed for both BIC and BAFO parameters (P>0.35 and P>0.11, respectively), a significantly higher level of torque was observed for the NWRBM group (P = 0.01). Bone morphology was similar between groups, which presented newly formed woven bone in proximity with the implant surfaces. Conclusion: A significant increase in early biomechanical fixation was observed for implants presenting the NWRBM surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The aim of this study was to investigate the temporal modifications in bone mass, bone biomechanical properties and bone morphology in spinal cord injured rats 2, 4 and 6 weeks after a transection. Material and methods: Control animals were randomly distributed into four groups (n = 10 each group): control group (CG) - control animals sacrificed immediately after surgery; spinal cord-injured 2 weeks (2W) - spinal cord-injured animals sacrificed 2 weeks after surgery; spinal cord-injured 4 weeks (4W) - spinal cord-injured animals sacrificed 4 weeks after surgery; spinal cord-injured 6 weeks (6W) - spinal cord-injured animals sacrificed 6 weeks after surgery. Results: Biomechanical properties of the right tibia were determined by a threepoint bending test and injured animals showed a statistically significant decrease in maximal load compared to control animals. The right femur was used for densitometric analysis and bone mineral content of the animals sacrificed 4 and 6 weeks after surgery was significantly higher compared to the control animals and animals sacrificed 2 weeks after surgery. Histopathological and morphological analysis of tibiae revealed intense resorptive areas in the group 2 weeks after injury only. Conclusions: The results of this study show that this rat model is a valuable tool to investigate bone remodeling processes specifically associated with SCI. Taken together, our results suggest that spinal cord injury induced bone loss within 2 weeks after injury in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated bone responses to titanium implants in the presence of an inorganic graft material. The bilateral mandible incisors of 24 rabbits were surgically extracted and one of the exposed sockets, chosen at random, was filled with an inorganic xenogenic bone graft (Gen-ox (R)), whereas the remaining socket was left to heal naturally and served as a control. After 60 days, titanium implants were inserted in the specific areas, and on days 0, 30, 60, and 180 after the implant insertions, six animals of each group were killed. Digital periapical radiography of implant region was obtained and vertical bone height (VBH) and bone density (BD) were evaluated by digital analysis system. In the undecalcified tissue cuts, bone-to-implant contact (BIC) and bone area (BA) within the limits of the implant threads were evaluated and compared statistically by means of two-way ANOVA and Tukey's test (rho < 0.05). No significant differences were detected in VBH and BA, either between groups or between different experimental intervals. The BD was significantly higher in the experimental group than in the control group in all the intervals tested, but there were no significant differences by interval. The BIC was statistically lower in the control group on day 0; however, a significant increase was observed on days 60 and 180 (rho < 0.05). The use of an inorganic xenograft prior to insertion of a titanium implant did not interfere with the course of osseointegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.